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Abstract. We study saddlepoint approximations to the tail-distribution for credit portfolio losses in con-
tinuous time intensity based models under conditional independent homogeneous settings. In such models,
conditional on the filtration generated by the individual default intensity up to time t, the conditional
number of defaults distribution (in the portfolio) will be a binomial distribution that is a function of a
factor Zt which typically is the integrated default intensity up to time t. This will lead to an explicit
closed-form solution of the saddlepoint equation for each point used in the number of defaults distribution
when conditioning on the factor Zt, and we hence do not have to solve the saddlepoint equation numerically.
The ordo-complexity of our algorithm computing the whole distribution for the number of defaults will be
linear in the portfolio size, which is a dramatic improvement compared to e.g. recursive methods which
have a quadratic ordo-complexity in the portfolio size. The individual default intensities can be arbitrary
as long as they are conditionally independent given the factor Zt in a homogeneous portfolio. We also
outline how our method for computing the number of defaults distribution can be extend to heterogeneous
portfolios. Furthermore, we show that all our results can be extended to hold for any factor copula model.
We give several numerical applications and in particular, in a setting where the individual default intensities
follow a CIR process we study both the tail distribution and the number of defaults distribution. We then
repeat similar numerical studies in a one-factor Gaussian copula model. We also numerically benchmark
our saddlepoint method to other computational methods. Finally, we apply of our saddlepoint method to
efficiently investigate Value-at-Risk for equity portfolios where the individual stock prices have simultane-
ous downward jumps at the defaults of an exogenous group of defaultable entities driven by a one-factor
Gaussian copula model were we focus on Value-at-Risk as function of the default correlation parameter in
the one-factor Gaussian copula model.
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1. Introduction

Consider a credit portfolio consisting of equally weighted obligors and let Nt be the number of defaults
in this portfolio up to time t. Finding the ”number of defaults” distributions Nt for a credit portfolio in
continuous time is at the core of credit portfolio risk management, portfolio OTC-loss computations, port-
folio counterparty risk management, hybrid equity-credit risk management (partly studied in this paper)
and for computing various quantities needed by central counterparties. Besides this, the distributions for
Nt are also needed when pricing portfolio credit derivatives.

There exists a variety of different algorithms and techniques to find the distributions for Nt. In this
paper we study saddlepoint approximations for the numboer of default distribution in continuous time
intensity based credit portfolios. We focus on homogeneous conditional independent credit portfolio
models where the default intensities λt = λ(Xt) are the same for all obligors and Xt is some stochastic
process. If FX

t is the filtration generated by λt = λ(Xt) then conditional on FX
∞ and for a fixed time

t, the random variable Nt will be a conditional binomial distribution. More specific, if one defines the
”factor” Zt as Zt =

∫ t
0 λs ds, then conditional on FX

∞ we will have a conditional binomial distribution
which will be an explicit function of the factor Zt. By using saddlepoint theory for a binomial distribution
which is a sum of iid Bernoulli random variables, this will lead to an explicit closed-form solution of the
saddlepoint equation for each point x for the conditional number of defaults distribution P

[
Nt ≥ x | FX

∞
]

and we thus do not have to solve the saddlepoint equation numerically for each outcome of the factor Zt.
The individual default intensities can be arbitrary as long as they are conditionally independent given the
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factor Zt in a homogeneous portfolio. We are primary considering exchangeable credit portfolios, but we
will also give a detailed description on how to deal with heterogeneous credit portfolios.

Furthermore, we show that all our results also hold when Nt is generated by default times coming from
any type of factor copula model, including the widely used one-factor Gaussian copula model and the
Clayton copula model.

In the numerical section of the paper, we give several numerical applications and in particular, in
a setting where the individual default intensities follow a CIR process we study the time evolution of
the distributions P [Nt ≥ x] and P [Nt = k]. We then repeat similar numerical studies in a one-factor
Gaussian copula model. There exists a huge amount of applications where the distributions P [Nt ≥ x]
and P [Nt = k] are used, particular in credit risk, for example risk management of credit portfolios done
under the real probability measure, but also for credit portfolio derivative pricing. However, in this paper
we will in Section 7 focus on applications of P [Nt = k] in equity risk management in a stock price model
developed in Herbertsson (2023a) where the individual stock prices have simultaneous downward jumps at
the defaults of an exogenous group of defaultable entities, for example corporates or sovereign states. By
”exogenous” we here mean that the entities, for example companies, will not be represented in the stock
portfolio, that is stocks issued by the defaultable corporates are not present in the stock portfolio in our
studies. The default times can come from any type of credit portfolio model. In this paper we will perform
some complementary numerical studies of the stock price model developed in Herbertsson (2023a), which
are not present in Herbertsson (2023a). More specific, in Section 10 we will present numerical results
to Value-at-Risk for a large stock portfolio, as function of the default correlation parameter in the one-
factor Gaussian copula model, at different timepoints and for different confidence levels. Such studies are
not done in Herbertsson (2023a), and are directly dependent on efficient and fast computations of the
distribution P [Nt = k].

The saddlepoint approach applied to conditional distributions for portfolio credit risk have been studied
previously in the literature. For example, conditional versions of the saddlepoint approach in credit
risk with applications to the Vasciek portfolio credit loss model in static settings have been studied in
e.g. Huang, Oosterlee & van der Weide (2007) and Martin (2011), see for Section 2.8-2.10 on pp.548-
550 in Martin (2011) and pp. 100-102 in Huang et al. (2007). Gordy (2002) applies the conditional
saddlepoint technique to the Creditrisk+-model in static time. For more about the conditional versions of
the saddlepoint approach in credit risk, see e.g. Chapter 5 in Kwok & Zheng (2018), in particular pp.114-
115 in Kwok & Zheng (2018). The approach in Gordy (2002), Huang et al. (2007) and Martin (2011)
uses heterogeneous portfolios, which forces one to solve the conditional saddlepoint equation numerically
and where the conditional factor is a static random variable which typically has normal distribution.
For example, in Section 2.9 on p.549 in Martin (2011) the author writes that a large portion of the
computational time is spent on finding the solution of the conditional saddlepoint equation which has to
be done for each value of the factor.

We will use a different approach from several different point of views, compared to e.g. Gordy (2002),
Huang et al. (2007) and Martin (2011). First, we will primary consider an intensity based setting which
means that the factor Zt will be an integrated intensity, but we will also prove that our the method
works for traditional factor models, as studied in e.g. Gordy (2002), Gregory & Laurent (2005), Huang
et al. (2007) and Martin (2011). Secondly, we will mainly consider homogeneous portfolios but this
assumption will later be relaxed to consider heterogenous portfolios that constitute of several homogeneous
subportfolios, similar to the ideas presented in Papageorgiou & Sircar (2009). The fact that we are primary
considering homogeneous portfolios implies that we will for each fixed t have a conditional binomial
distribution which will lead to a explicit closed form solution of the saddlepoint equation for each point x
given the factor Zt, and we thus do not have to solve the saddlepoint equation for each point x given the
factor Zt which can be very time consuming for heterogeneous portfolio. Thirdly, since the model is in
continuous time we can calibrate the individual default probabilities for the default times (which will be
same for all obligors) to e.g. a term-structure of these default probabilities and then use the parameters
in the model to compute the loss-distributions for arbitrary values of t, knowing that the model have been
consistently calibrated to available data of e.g. the term-structure of the individual default probability.

Another major difference between our approach and the ones in e.g Gordy (2002), Huang et al. (2007)
and Martin (2011), is that we in the intensity based case use the saddlepoint in combination with Fourier
inversion methods, alteratively we can use the saddlepoint method twice. First, the saddlepoint approach
is used to expand the conditional binomial distribution in closed formulas without needing to solve the
saddlepoint equation numerically for this conditional distribution. Then we use the either Fourier inversion
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methods or the saddlepoint approach to find good approximations to the density fZt(z) to the random
variable Zt which is possible due to the fact that we often have highly analytical expression for the moment
generating function to the random variable Zt =

∫ t
0 λ(Xs) ds, in terms of the parameters describing the

individual default intensity λ(Xt).
To this end, we also remark that there exists recursive algorithms for computing P

[
Nt = k | FX

∞
]
, see e.g.

in Andersen, Sidenius & Basu (2003) or Andersen & Sidenius (2004), which works both for heterogeneous
and homogeneous portfolios. However, for a portfolio with m obligors, the recursive algorithm introduced
in Andersen et al. (2003) implies that computing the whole distribution P

[
Nt = k | FX

∞
]
, that is for all

k = 0, 1, . . . ,m, is of order O(m2), see for example on p.68 in Andersen et al. (2003) where the authors
write ”the cost of building the loss distribution grows as roughly the square of the basket size”. Another

drawback with the recursive method is that it will not give any explicit formulas for P

[

N
(m)
t ≥ x

∣
∣
∣FX

∞
]

or P
[
Nt = k | FX

∞
]
.

The saddlepoint approach introduced in this paper will produce a method of order O(1) when computing
P
[
Nt ≥ x | FX

∞
]
and thus also O(1) for computing P

[
Nt = k | FX

∞
]
. Hence, for a portfolio withm obligors,

our approach will therefore for computing the whole distribution P
[
Nt = k | FX

∞
]
, that is for all k =

0, 1, . . . ,m, be of order O(m), i.e. linear in the portfolio size m, which is an dramatic improvement
compared with the quadratic, O(m2), recursive algorithm introduced in Andersen et al. (2003). Another
advantage with our saddlepoint approach is that it leads to explicit formulas for P

[
Nt ≥ x | FX

∞
]
and thus

also for P
[
Nt = k | FX

∞
]
in terms of x, k,m and the FX

∞-conditional individual default probability. As
pointed out above, our saddlepoint method will also work for conditional factor models, such as discussed
in e.g Gordy (2002), Gregory & Laurent (2005), Huang et al. (2007) and Martin (2011), and then we
simply replace P

[
Nt ≥ x | FX

∞
]
and P

[
Nt = k | FX

∞
]
with P [Nt ≥ x |Z] and P [Nt = k |Z] for some static

factor Z, and this will be discussed in Section 5 .
Besides the recursive algorithms discussed in e.g. Andersen et al. (2003) and Andersen & Sidenius

(2004), there also exists Fourier methods where the characteristic function for the loss distribution is
directly derived and used with Fourier inversion methods such as the FFT method and such techniques
are discussed in e.g. Gregory & Laurent (2003) and Gregory & Laurent (2005). However, as pointed
out in Andersen et al. (2003), such Fourier inversion methods seem to be much slower than recursive
algorithms developed in Andersen et al. (2003) and Andersen & Sidenius (2004). For example, on p.68
in Andersen et al. (2003) the authors remark that they conducted numerical examples where the Fourier
method could be up to 25 times slower than the recursive algorithm. Given that our saddlepoint approach
has linear complexity in terms of the portfolio size, compared to the quadratic complexity of the recursive
algorithms in Andersen et al. (2003), we therefore conclude that our method should also be much faster
than the Fourier inversion methods proposed in Gregory & Laurent (2003) and Gregory & Laurent (2005).

The rest of the paper is organized as follows. First, in Section 2 we introduce notation and concepts
that will be used in the rest of the paper. In Section 3 we outline so called intensity based models via the
Cox-approach, which are conditional independent models, and also state some important results which
will be the main feature allowing us to use the saddlepoint approximation method. Next, in Section 4 we
first recap the saddlepoint approach and then use it to find very sharp approximations to the conditional
tail-probabilities for the number of defaults distributions in an intensity based credit portfolio model as
outlined in Section 3. Section 5 discuss how the results in Section 4 also will hold for factor copula models,
such as the Gaussian one-factor model and the the Clayton copula. In Section 6 we show how our methods
for the number of default distributions in homogeneous portfolios, can be relaxed to consider heterogenous
portfolios that constitute of several homogeneous subportfolios, both for intensity based models and factor
copula models. Section 7 focus on applications of P [Nt = k] in equity risk management in a stock price
model developed in Herbertsson (2023a) where the individual stock prices have simultaneous downward
jumps at the defaults of an exogenous group of defaultable entities, for example corporates or sovereign
states. By ”exogenous” we here mean that the entities, for example companies, will not be represented in
the stock portfolio, that is stocks issued by the defaultable corporates are not present in the stock portfolio
in our studies. In Section 8 we study the time evolution of the distributions P [Nt ≥ x] and P [Nt = k]
when the individual default intensities follow a CIR process and in Section 9 we repeat similar numerical
studies in a one-factor Gaussian copula model. In Section 10 we perform some complementary numerical
studies of the stock price model briefly discussed in Section 7, and which are not present in Herbertsson
(2023a). For example, in Section 10 we give numerical results to Value-at-Risk for a large stock portfolio,
as function of the default correlation parameter in the one-factor Gaussian copula model, at different
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timepoints and for different confidence levels. Such studies are not done in Herbertsson (2023a), and are
directly dependent on efficient and fast computations of the distribution P [Nt = k]. Finally, in Section 11
we numerically benchmark our method to another computational method, and show that the saddlepoint
method is remarkable robust, while other methods will often fail numerically.

2. The credit portfolio loss distribution for homogeneous settings in general
continuous time models.

Consider a homogeneous credit portfolio consisting of m equally weighted obligors with default times

τ1, τ2 . . . , τm. The number of defaults in the portfolio up to time t, denoted by N
(m)
t is defined as

N
(m)
t =

m∑

i=1

1{τi≤t} . (2.1)

Throughout this paper we will assume that the default times τ1, τ2 . . . , τm are generated from some
conditional independent model, either via the intensity based approach or via a factor copula model.
Furthermore, we are primary considering exchangeable credit portfolios, but in a second stage we will
outline how to deal with heterogeneous portfolios in Section 6.

The main goal of this paper is to find compact and computational tractable approximations of the

tail distributions P

[

N
(m)
t ≥ x

]

for arbitrary sizes of m, i.e. m can be small or large. The technique

that we will use is the celebrated saddlepoint approximation method but in a way that has not been
used in the credit and finance literature before. The main idea in this paper is that when we in the

above models conditional on some ”factor”, then N
(m)
t will for a fixed timepoint t be a mixed binomial

random variable, or equivalently, conditional on the factor then {1{τi≤t}}mi=1 is an i.i.d Bernoulli sequence
with some random probability. We can then use a conditional version of the Lugannani-Rice formula for
the binomial distributions which will be fully analytic and where the saddlepoint equation is obtained in
closed formula so that no numerical solution of this equation is needed. We then apply this method to find

sharp approximations to the conditional tail distribution of N
(m)
t and our approach works for arbitrary

portfolio sizes m, where m can be small or large.
We will first and foremost focus on conditionally independent intensity based models, that is where the

default times τ1, τ2 . . . , τm have intensities with respect to some filtration, as will be discussed in Section

3 below, and in this settings sharp formulas for P
[

N
(m)
t ≥ x

]

will be derived in Subsection 4.3. Later, we

will in Section 5 extend the results from the intensity based setting in Subsection 4.3 and show that all
the results in Subsection 4.3 also hold for any factor copula model, including the widely used one-factor
Gaussian copula model and the Clayton copula model.

3. Conditional independent intensity based models and their default distributions in
homogeneous settings

In this section we will outline so called intensity based models via the Cox-approach which are condi-
tional independent models. We also state some important results for these models and their consequences,
in particular for credit portfolios, which are a main feature that will be used in our saddle point approxi-
mations.

3.1. Construction of default times in the Cox-setting. Let (Xt)t≥0 be a d-dimensional stochastic
process, i.e. Xt = (Xt,1,Xt,2, . . . ,Xt,d) in some space which typically is Rd where d is an integer, and let

FX
t = σ(Xs; s ≤ t) be the filtration generated by the factor process X.
Consider m obligors with default times τ1, τ2 . . . , τm and let the mappings λ1, λ2 . . . , λm be the corre-

sponding FX
t default intensities, where λi : R

d 7→ R
+ for each obligor i. This means that each default

time τi is modeled as the first jump of a Cox-process, with intensity λi(Xt). It is well known (see e.g.
Lando (1998)) that given an i.i.d sequence {Ei} where Ei is exponentially distributed with parameter
one, such that all {Ei} are independent of FX

∞, then

τi = inf

{

t > 0 :

∫ t

0
λi(Xs)ds ≥ Ei

}

. (3.1.1)
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Hence, for any T ≥ t we have

P
[
τi > t | FX

T

]
= exp

(

−
∫ t

0
λi(Xs)ds

)

(3.1.2)

and thus

P [τi > t] = E

[

exp

(

−
∫ t

0
λi(Xs)ds

)]

. (3.1.3)

Note that the default times are conditionally independent, given FX
∞. There are many examples of

intensities which yields closed-form expressions, both for for (3.1.2) and (3.1.3), for example, when the
intensity follows a CIR-process as in Bielecki, Cousin, Crépey & Herbertsson (2014c), or a shot-noise
process as in Herbertsson, Jang & Schmidt (2011) or a finite-state Markov chain as in e.g. Herbertsson
& Frey (2014). Below we give an example of the standard CIR-process.

3.1.1. Example: intensity is a CIR-process. Let λt = λ (Xt) = Xt be a Cox-Ingersoll-Ross process (CIR-
process). This means that

dλt = a (µ− λt) dt+ σ
√

λtdWt (3.1.1.1)

whereWt is a Brownian motion under the risk-neutral measures P. Furthermore, one can then show that,
see e.g. Subsection 9.5.2, pp.423-424 in McNeil, Frey & Embrechts (2005) or Appendix E, pp.292-293 in
Lando (2004)

E

[

exp

(

−
∫ T

t
λsds

) ∣
∣
∣
∣
FX
t

]

= exp (A(T − t)−B(T − t)λt) (3.1.1.2)

where

A(s) =
2aµ

σ2
ln

(

2γe(γ+a)s/2

(γ + a)(eγs − 1) + 2γ

)

(3.1.1.3)

γ =
√

a2 + 2σ2 (3.1.1.4)

B(s) =
2 (eγs − 1)

(γ + a)(eγs − 1) + 2γ
(3.1.1.5)

so P [τ > T ] = exp (A(T )−B(T )λ0).

3.2. The credit portfolio loss distribution for homogeneous intensity based settings. In this
section we give a general discussion of how to find the distribution of the number of defaults in the

portfolio up to time t, denoted by N
(m)
t and defined as in Equation (2.1), that is N

(m)
t =

∑m
i=1 1{τi≤t},

when the default times τ1, τ2 . . . , τm are constructed as in (3.1.1) for a homogeneous portfolio. Thus, we
assume that λi(Xt) = λ(Xt) for all obligors in the portfolio. Later, this will be relaxed in Section 6.

Most of the previous credit literature for homogeneous credit portfolios have mainly been focused on so

called large portfolio approximations of N
(m)
t which only works accurately for very large m. In this paper

we make no restriction on the portfolio size m, that is, we work with arbitrary sizes of m where m can be
small or large. As we will see in Subsection 4.3, the numerical errors for the saddlepoint approximation

to the distribution P

[

N
(m)
t ≥ x

]

will be of the order O(m−3/2) which thus quickly decreases when m

increases. In practice however, as will be seen in our numerical studies in this paper, the numerical errors
will be much smaller than m−3/2 even for small values of the portfolio size m. This is important, since
one sometimes also want to consider moderate sizes of m, in particular when working with heterogeneous
portfolios that will be split into several different homogeneous credit portfolios that are merged together,
as will be discussed in Section 6.

We first state the following proposition, which is more or less known in the credit literature, in order
to introduce notation and concepts that will be used in the rest of the paper.

Proposition 3.1. Consider a homogeneous credit portfolio with m entities with individual default inten-
sities λi(Xt) = λ(Xt) and default times τi generated via (3.1.1). Define Zt and p(Zt) as

Zt =

∫ t

0
λ(Xu)du and p(Zt) = 1− e−Zt . (3.2.1)

Then,

P
[
τi ≤ t | FX

∞
]
= p(Zt) (3.2.2)
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and τ1, . . . , τm are conditional independent given FX
∞ where

lim
m→∞

N
(m)
t

m
= p(Zt) a.s. under the random measure P

[
· | FX

∞
]

(3.2.3)

and

lim
m→∞

P

[

N
(m)
t

m
≤ x

]

= P [p(Zt) ≤ x] . (3.2.4)

Proof. Given the construction in (3.1.1) it is clear that conditional on the information FX
∞ the defaults

times τ1, τ2 . . . , τm are conditional independent, given FX
∞. Consequently, for each t > 0 the Bernoulli

random varialbes 1{τ1≤t}, 1{τ2≤t}, . . . , 1{τm≤t} will be conditional independent given FX
∞. Since the credit

portfolio is homogeneous credit portfolios we have λi(Xt) = λ(Xt) and due to the conditional independence
it is also clear that conditional on FX

∞ then 1{τ1≤t}, . . . , 1{τm≤t} will be i.i.d Bernoulli random variables
all with the same conditional probability, that is

P
[
1{τi≤t} = 1

∣
∣FX

∞
]
= P

[
τi ≤ t | FX

∞
]
= 1− exp

(

−
∫ t

0
λ(Xu)du

)

(3.2.5)

where the last equality follows from (3.1.2) where we let T → ∞. For notational convenience we define
the non-negative random variables Zt and p(Zt) as

Zt =

∫ t

0
λ(Xu)du and p(Zt) = 1− e−Zt . (3.2.6)

So in view of (3.2.5)-(3.2.6) we thus have

p(Zt) = 1− e−Zt = 1− e−
∫ t
0 λ(Xu)du = P

[
τi ≤ t | FX

∞
]

(3.2.7)

that is, p(Zt) is the conditional (i.e. random) default probability at time t for each obligor i with default
time τi, given the information FX

∞. Next, we note that for a fixed time point t, we have a so called binomial
mixing model with the Bernoulli variables 1{τi≤t}, see e.g in Frey & McNeil (2002), Frey & McNeil (2003)

and Chapter 8.4 in McNeil et al. (2005). More specific, conditionally on FX
∞, and for a fixed t, we have

that the law of large numbers hold, since condition on FX
∞, then 1{τ1≤t}, 1{τ2≤t}, . . . , 1{τm≤t} are i.i.d with

default probability p(Zt), that is

lim
m→∞

N
(m)
t

m
= p(Zt) a.s. under the random measure P

[
· | FX

∞
]

(3.2.8)

see e.g. Proposition 4.5 in Frey & McNeil (2003), Proposition 8.15 in McNeil et al. (2005), p.218 in Lando
(2004), or Proposition 9.10 in Hult, Lindskog, Hammarlid & Rehn (2012), which proves (3.2.8). Finally,
(3.2.8) immediately implies that

lim
m→∞

P

[

N
(m)
t

m
≤ x

]

= P [p(Zt) ≤ x]

which proves (3.2.4) and this concludes the proof.
�

Remark 3.2. Note that in Equation (3.2.7) we can for any u ≥ t replace FX
∞ with the information FX

u

since

E
[
p(Zt) | FX

u

]
= P

[
P
[
τi ≤ t | FX

∞
] ∣
∣FX

u

]
= P

[
τi ≤ t | FX

u

]
= p(Zt)

where the last equality is due to (3.1.2) and the fact that u ≥ t, the second last equality is due to the
tower property and that u ≥ t.

There are two main consequences from Proposition 3.1, which we will discuss in the below two subsec-
tions.
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3.2.1. The first consequence of Proposition 3.1. The first consequence of Proposition 3.1 is that,
for a homogeneous credit portfolio with m entities with default intensities λi(Xt) = λ(Xt) and default

times τi generated via (3.1.1), then conditional on the information FX
∞ the random variable N

(m)
t will

for each fixed t be a mixed binomial random variable. To see this, note that conditional on FX
∞ then

{1{τi≤t}}mi=1 is an i.i.d Bernoulli sequence with probability p(Zt), that is, each Bernoulli variable 1{τi≤t}
have, conditional on FX

∞, a success probability of p(Zt) where p(Zt) is defined as in (3.2.1). Since N
(m)
t is

a sum of the variables {1{τi≤t}}mi=1 it will, by definition, therefore conditional on FX
∞, for a fixed t, then

be a mixed binomial random variable with parameters m and p(Zt), so that

P

[

N
(m)
t = k

∣
∣
∣FX

∞
]

=

(
m

k

)

p(Zt)
k (1− p(Zt))

m−k (3.2.9)

and thus

P

[

N
(m)
t = k

]

= E

[(
m

k

)

p(Zt)
k (1− p(Zt))

m−k
]

(3.2.10)

where p(Zt) is defined as in (3.2.1). For more about so called mixed binomial random variables, see e.g.
in Frey & McNeil (2002), Frey & McNeil (2003), Chapter 8.4 in McNeil et al. (2005) and Chapter 9.2 in
Lando (2004). Hence, from (3.2.9)-(3.2.10) we see that

P

[

N
(m)
t = k

]

= E

[(
m

k

)

p(Zt)
k (1− p(Zt))

m−k
]

=

∫ ∞

0

(
m

k

)

p(z)k (1− p(z))m−k fZt(z) dz (3.2.11)

where p(Zt) is defined as in (3.2.1) and fZt(z) is the density to the random variable Zt defined as in

(3.2.1). Hence, finding P

[

N
(m)
t = k

]

via (3.2.11) will in turn again require the density fZt(z) to the

random variable Zt for each fixed t which can efficiently be obtained with e.g. Fourier inversion tech-
niques or the saddelpoint approach, due to the fact that we often have highly analytical expression for

the moment generating function to the random variable Zt =
∫ t
0 λ(Xs) ds, in terms of the parameters

describing the individual default intensity λ(Xt). However, we here remark that a direct computation of
the integral in the right hand side of (3.2.11) will for say, m ≥ 55 in practice not work since the binomial
coefficient will be to large to be stored with exact accuarcy on a standard computer, using standard
math software such as e.g. Matlab, R or Python. The numerical problem arising from (3.2.11) has also
been discussed in other papers, for example on p.357 in Papageorgiou & Sircar (2009). More specific, on
p.357 in Papageorgiou & Sircar (2009) the authors expand the left hand side of (3.2.11), that is, the term

E

[(m
k

)
p(Zt)

k (1− p(Zt))
m−k

]

, to obtain the formula

P

[

N
(m)
t = k

]

=

(
m

k

) k∑

j=0

(
k

j

)

(−1)k−jE
[
p(Zt)

m−j] (3.2.12)

and Papageorgiou & Sircar (2009) then remark that the terms in the sum (called Euler-Maclaurin sum) in
the right hand side of (3.2.12) have altering signs which will lead to numerical instabilities as m increases.
Furthermore, Papageorgiou & Sircar (2009) also claims that ”Even though there exist efficient algorithms
for accurate numerical computation of these summations, it is necessary to limit the number of firms in
the portfolio, m, to 30.”

Numerically, one can in most software packages circumvent the problem discussed in connection with
Equation (3.2.11) by e.g. use built-in functions for the probability distribution of a binomial distribution
applied to the ”fixed” probability p(z) and then repeat this for every z in the numerical quadrature of the
integral in the right hand side of (3.2.11). However, as will be seen in Section 11, using built-in numerical
functions such as e.g. binopdf in matlab, with numerical quadrature of (3.2.11) is not always reliable and
will often fail for different k-values. Another drawback of this alternative and purely numerical approach

is that it lacks analytical properties for the tail probability P

[

N
(m)
t ≥ k

]

in the sense that we don’t have

an semi-analytical formula for P
[

N
(m)
t ≥ k

]

, which will be the case with the saddlepoint approach, up to

an error of the order O(m−3/2).
In Section 4 we use the saddlepoint approach to derive very sharp approximations to the conditional

tail-probabilities for the number of defaults distribution P

[

N
(m)
t ≥ k

]

in an intensity based credit portfolio

model as outlined in Section 3. Section 5 discuss how the results in Section 4 also will hold for factor
copula models, such as the Gaussian one-factor model and the the Clayton copula.
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3.2.2. The second consequence of Proposition 3.1. The second important implication from Propo-
sition 3.1 is that (3.2.8) in Proposition 3.1 implies that when m is large, then

N
(m)
t

d≈ |FX
∞
mp(Zt) for large m (3.2.13)

where
d≈ |FX

∞
means ”approximately equal in distribution under the measure P

[
· | FX

∞
]
”. Thus, a conse-

quence of (3.2.13) is that if m is large we have for any well defined mapping g : R 7→ R that

E

[

g
(

N
(m)
t

)]

≈ E [g (mp(Zt))] when m is large. (3.2.14)

The approximation of
N

(m)
t
m via p(Zt) in (3.2.8) or N

(m)
t via mp(Zt) in (3.2.13) and e.g. (3.2.14) is often

denoted by the large portfolio approximations (LPA), or sometimes just LPA-formula. The benefit of the
approximation (3.2.14) is that in some models it is sometimes easier to compute the quantity E [g (mp(Zt))]

compared with computing the exact quantity E

[

g
(

N
(m)
t

)]

is in general a tedious problem numerically as

discussed in Subsection 3.2.1 above. The drawback with the LPA-method (3.2.14) is that it often requires
quite high levels of m to obtain a good accuracy.

In this paper we will not focus on the LPA-approximations (3.2.13)-(3.2.14) but instead focus on the

exact distribution of N
(m)
t for arbitrary values of m (i.e. both small or large m-values), considered in

Subsection 3.2.1 via the saddlepoint approach, which will be discussed in the next section, that is Section
4.

4. The saddlepoint approach for homogeneous credit portfolio distributions in
conditional independent intensity based models

In this section we will use the saddlepoint approach to find very sharp approximations to the conditional

probabilities P
[

N
(m)
t ≥ x

∣
∣
∣FX

∞
]

and P

[

N
(m)
t = k

∣
∣
∣FX

∞
]

where N
(m)
t is defined as in (2.1), that is N

(m)
t is

a sum of the indicator functions 1{τ1≤t}, . . . , 1{τm≤t} where the default times τ1, τ2 . . . , τm are generated
from conditional independent intensity based models with identical intensities λt = λ(Xt), as specified in
Section 3 and FX

t is the filtration generated by λt = λ(Xt). We first in Subsection 4.1 briefly recap the
most important features of the saddlepoint approach, which also introduces notation that will be used in
the rest of this paper. Then in Subsection 4.2 we show how the saddlepoint approach can efficiently be
applied to the standard binomial model. Next, in Subsection 4.3 we then use a conditional version of the
results in Subsection 4.2 and apply it to credit portfolios, which is one of the main results in this paper.

4.1. A brief recapitulation of the saddlepoint approach for lattice variables. In this subsection
we give a very short recapitulation of the most important features of the saddlepoint approach needed for
this paper, and it will also introduces notation that will be used in the rest of the paper. We will mainly
focus on approximations of tail-distributions to discrete random variables (i.e. for lattice variables), and
leaving out the discussion of the corresponding approximation formulas for continuous random variables,
since this is not needed in our setting. We stress that similar expressions for the tail distribution presented
here also exists for continuous random variables.

Let X be a random variable, and let MX(s) and KX(s) be its moment-generation function and cumu-
lative generating functions, that is

MX(s) = E
[
esX
]

(4.1.1)

and
KX(s) = lnMX(s) (4.1.2)

where we assume that MX(s) and KX(s) are well defined for some suitable range of s, which is standard
to do in the saddlepoint literature, see e.g the comments after Equation (2.1) on p.38 in Daniels (1987).

Let K
′

X(s),K
′′

X(s) and K
′′′

X (s) be the first, second and third derivatives of KX(s) with respect to s. Next,

let ŝ = ŝ(x) be the solution to the saddlepoint equation K
′

X(s) = x, that is

K
′

X (ŝ) = x . (4.1.3)

where we for notational convenience often write ŝ for ŝ(x) so that e.g K
′′

X (ŝ(x)) and K
′

X (ŝ(x)) is rewritten

as K
′′

X (ŝ) and K
′

X (ŝ), and similar for the higher order derivatives of KX(s) evaluated at the point
ŝ = ŝ(x). Furthermore, let sgn(x) be the sign of x so that sgn(x) = 1 if x > 0 and sgn(x) = −1 if x < 0
and sgn(x) = 0 if x = 0 and let ϕ(x) and Φ(x) denote the density and distribution function to a standard
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normal random variable. Let X1, . . . ,Xm be an i.i.d sample with same distribution as X above and let
X̄m be the sample mean, that is

X̄m =
1

m

m∑

i=1

Xi . (4.1.4)

Then the saddlepoint approach implies that the tail probability for the sample mean X̄m, that is P
[
X̄m ≥ x

]

can for x 6= E
[
X̄m

]
= E [X] be approximated via the so called Lugannani-Rice formula, given by

P
[
X̄m ≥ x

]
= 1− Φ (ŵ) + ϕ (ŵ)




1

(1− e−ŝ)
√

mK
′′

X (ŝ)
− 1

ŵ
+O(m−3/2)



 (4.1.5)

where ŵ = ŵ(x) is given by

ŵ = sgn(ŝ)
√

2m (xŝ−KX (ŝ)) (4.1.6)

see e.g. Equation (6.5) on p.44 in Daniels (1987), or Equation (3.3.17) on p.79 in Jensen (1995), where
ŝ = ŝ(x) and ŵ = ŵ(x) are defined as in (4.1.3) and (4.1.6). If x = E

[
X̄m

]
= E [X] there exists various so

called continuity corrections to the expression P
[
X̄m ≥ E [X]

]
in (4.1.5), similar to the one in Equation

(??), see e.g. Subsection 1.2.3 - 1.2.7 on pp.17-28 in Butler (2007).
Often, very good approximations to P

[
X̄m ≥ x

]
can be obtained by dropping the higher order terms.

For example, a good approximation to P
[
X̄m ≥ x

]
for x 6= E

[
X̄m

]
= E [X] is obtained from (4.1.5) as

P
[
X̄m ≥ x

]
≈ 1− Φ (ŵ) + ϕ (ŵ)




1

(1− e−ŝ)
√

mK
′′

X (ŝ)
− 1

ŵ



 (4.1.7)

where ŝ = ŝ(x) and ŵ = ŵ(x) are defined as above.

4.2. The saddlepoint approach applied to the binomial distribution. If X1, . . . ,Xm is an i.i.d
sample with same distribution as a Bernoulli distributed random variable X where P [X = 1] = p and
P [X = 0] = 1 − p then mX̄m =

∑m
i=1Xi will be binomial distributed random variable with parameters

m and p. Furthermore, straightforward computations gives

MX(s) = (1− p) + pes and K
′

X (s) =
pes

1− p+ pes
and K

′′

X (s) =
p(1− p)es

(1− p+ pes)2
(4.2.1)

where we remind that KX(s) = lnMX(s). The solution ŝ = ŝ(x) to the equation K
′

X (ŝ) = x is then given
by

eŝ =
x

1− x

1− p

p
or, equivalently ŝ = ln

(
x(1− p)

(1− x)p

)

for 0 < x < 1 (4.2.2)

and some calculations gives that K
′′

X (ŝ) = x(1− x). Note that X̄m by construction will have support on
0 ≤ x ≤ 1.

By using (4.2.1), ŝ(x) as in (4.2.2) and that K
′′

X (ŝ) = x(1 − x), and letting s = ŝ = ŝ(x) in (4.1.5)
together with some computations, one can derive very explicit formulas for sharp approximations to the
tail probability P

[
X̄m ≥ x

]
for any 0 < x < 1, that is, it is possible to derive a approximation for the tail

probability of a binomial distribution via the Lugannani-Rice formula for lattice random variables (4.1.5),
see e.g. Example 3.3.4 on p.86 in Jensen (1995),

P
[
X̄m ≥ x

]
= 1− Φ (ŵB) + ϕ (ŵB)

(
1

ẑB
− 1

ŵB
+O(m−3/2)

)

(4.2.3)

where ŵB = ŵB(x,m, p) and ẑB = ẑB(x,m, p) are defined as

ŵB = ŵB(x,m, p) = sgn (ŵB)

√

2m

(

x ln

(
x(1− p)

(1− x)p

)

− ln

(
1− p

1− x

))

(4.2.4)

with

sgn (ŵB) = sgn

(
x(1− p)

(1− x)p
− 1

)

(4.2.5)

and

ẑB = ẑB(x,m, p) =
√

mx(1− x)

(

1− (1− x)p

x(1− p)

)

. (4.2.6)
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The equations (4.2.4)-(4.2.6) can also be found in e.g. Example 3.3.4 on p.86 in Jensen (1995). Further-
more, a slightly different version of (4.2.4)-(4.2.6) is obtained by combing Example 1.2.4(2) on p.20 in
Butler (2007) together with formulas (1.27)-(1.28) on pp.17-18 in Butler (2007).

We will always assume that x 6= p when using the formulas (4.2.3)-(4.2.6). If x = p then ŵB = 0 in
(4.2.4) and ẑB = 0 in (4.2.6) and the formula (4.2.3) can then not be used, instead we use one of the
so called continuity corrections to the expression P

[
X̄m ≥ E [X]

]
in see e.g. Subsection 1.2.3 - 1.2.7 on

pp.17-28 in Butler (2007). Also note that if x = 1 then ẑB = 0 and ŵB is not defined, so the formula
(4.2.3) can then not be used directly. However, since P

[
X̄m ≥ 1

]
= pm, it is easy to overcome this problem

and this will be discussed in more detail in Subsection 4.3.
For 0 < x < 1 with x 6= p, define the function H

(LR)
B (x,m, p) as

H
(LR)
B (x,m, p) = 1− Φ (ŵB) + ϕ (ŵB)

(
1

ẑB
− 1

ŵB

)

(4.2.7)

where ŝ = ŝ(x, p) is defined as in Equation (4.2.2) and ŵB = ŵB(x, p,m) and ẑB = ẑB(x, p,m) are
specified as in (4.2.4)-(4.2.6). Then, (4.2.3) and (4.2.7) implies that

P
[
X̄m ≥ x

]
≈ H

(LR)
B (x,m, p) . (4.2.8)

The left panels of Figure 1 and 2 display the tail-probability P
[
X̄m ≥ x

]
for x = k

m and k = 1, 2, . . . ,m−1
for m = 30, p = 0.12 (in Figure 1) and m = 125, p = 0.0329 (in Figure 2) computed via the approximation

H
(LR)
B (x,m, p) in (4.2.8) calculated via (4.2.7), that is, we use (4.2.3)-(4.2.6) without the error term in

(4.2.3). In the same left panels of Figure 1 and 2 we also display the P
[
X̄m ≥ x

]
computed via the Matlab-

function binopdf. More specific, by using that P
[
X̄m ≥ k

m

]
=
∑m

j=k P

[

X̄m = j
m

]

=
∑m

j=k P [Y = j]

where Y
d
= Bin(m, p) we can compute P

[
X̄m ≥ x

]
for x = k

m via the matlab-function binopdf which

gives the probability function for a binomially distributed random variable Y
d
= Bin(m, p). The right

panels in Figure 1 and 2 shows the relative error in percent between the two methods where the relative
difference is measured with respect to the Matlab-method.

First, in Figure 1 where m = 30, p = 0.12, we see that the saddlepoint method will give an extremely
good fit for 1 ≤ k ≤ 22 where the relative error (in percent) compared with the Matlab-method, never
exceeds 0.81% which thus are very sharp approximations to the exact method which uses a sum of the
matlab binopdf-function. At k = 23 the error jumps to 6.74% and for 24 ≤ k ≤ 28 the error will
be decreasing from 23.5% at k = 24 down to 9.5% at k = 28, and at k = 29 the error is only 1.45%.
Furthermore, the values for P

[
X̄m ≥ k

m

]
computed via Matlab for 24 ≤ k ≤ 28 will be decreasing

from 2.27 × 10−17 down to 5.61 × 10−24 which are extremely small numbers. Thus, the saddlepoint for
24 ≤ k ≤ 28 will give errors/deviations between 23.5% to 9.5% on probabilities in the range 2.27× 10−17

down to 5.61× 10−24 and in many practical financial/economical situations these errors will therefore not
have a huge impact.

Next, in Figure 2 we repeat the same study as in Figure 1 but now for m = 125, p = 0.0329 (the values
m = 125, p = 0.0329 will also be used in our numerical studies in Section 8-11, for intensity based models
and factor copula settings). So regarding the accuracy for m = 125, p = 0.0329, we see in the right panel
of Figure 2 that for 1 ≤ k ≤ 27 the relative error (in percent) compared with the Matlab-method, never
exceeds 0.86% which thus are very sharp approximations to the exact Matlab-method. At k = 28 the
error jumps to 1.25% and for 29 ≤ k ≤ 115 the error will be continuously decreasing from 50.0% at k = 29
down to 10.6% at k = 115. Furthermore, for 116 ≤ k ≤ 124 the relative error will vary in the range of
0.89% up to 9.85%. Finally, as seen in the left panel in Figure 2, the values for P

[
X̄m ≥ k

m

]
computed via

Matlab for 29 ≤ k ≤ 124 will be continuously decreasing from 9.67 × 10−17 down to 1.64 × 10−182 which
again are extremely small numbers, and as mentioned above, in most situations, errors of around 10-45%
on such small numbers will in most financial/economical practical applications not have a huge impact.
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Figure 1. m = 30, p = 0.12. Left panel: Binomial tail-probability P
[
X̄m ≥ k

m

]
for k =

1, 2, . . . ,m − 1 via Lugannani-Rice and exact (Matlab) method. Right panel: rel-
ative error in % where the error is measured with respect to the Matlab-method.
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Figure 2. m = 125, p = 0.0329. Left panel: Binomial tail-probability P
[
X̄m ≥ k

m

]
for k =

1, 2, . . . ,m− 1 via Lugannani-Rice and exact (Matlab) method. Right panel: relative
error in % where the error is measured with respect to the Matlab-method.

Note that in Figure 1 and 2 we compute H
(LR)
B

(
k
m ,m, p

)
for k = 1, . . . ,m − 1 in (4.2.8) for the same

fixed probability p ∈ (0, 1). In Section 4.3 and Section 5-11, we will for k = 1, . . . ,m − 1 compute

E

[

H
(LR)
B

(
k
m ,m, p(Zt)

)]

where p(Zt) ∈ [0, 1] and Zt is some random variable. Hence, when computing

E

[

H
(LR)
B

(
k
m ,m, p(Zt)

)]

we will have a weighted average of H
(LR)
B

(
k
m ,m, p(Zt)

)
over different (conditional)

probabilities p(Zt) as opposed to a fixed p used in Figure 1 and 2. This averaging over different values of

p(Zt) in E

[

H
(LR)
B

(
k
m ,m, p(Zt)

)]

will significantly reduce the corresponding relative errors compared with
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the ”exact” method, when computing the tail-probability P

[

N
(m)
t ≥ k

]

of the number of defaults in a

intensity-based credit risk portfolio model or a factor copula model, as will be seen in Section 11 (see for
example in Figure 20 and Figure 21 in Section 11). Hence, the corresponding errors shown in Figure 1 and
2 will in a conditional independent credit risk model (using mixed binomial models), decrease significantly
in particular for moderate or large k-values, and in fact, the Matlab-method (via the binopdf-function)
will very often fail numerically while the saddlepoint method is very robust, see e.g. in Figure 22 and
Figure 23 in Section 11.

Before we end this subsection, we give a final comment regarding the exact method in Figure 1 and 2.
Note that another alternative to the sum of binopdf-functions when computing P

[
X̄m ≥ k

m

]
in Figure

1 and 2 is to use the distribution function binocdf to Y
d
= Bin(m, p) in Matlab since P

[
X̄m ≥ k

m

]
=

1 − P [Y ≤ k − 1]. But using this second method via the distribution function binocdf is a much worse
option than binopdf, since Matlab will already for moderate sizes of k treat the value 1−P [Y ≤ k − 1] as
zero due to floating point relative accuracy, that is, for moderate k-values P [Y ≤ k − 1] will be extremely
close to one so that Matlab then set 1 − P [Y ≤ k − 1] to zero (the same numerical phenomena will also
hold in R, Python and Excel).

4.3. The saddlepoint approach applied to the conditional binomial distribution. We will in
this subsection use a conditional version of the results in Subsection 4.2 and apply it to credit portfolios
in an intensity based setting as presented in Section 3.

We will below use the similar notation for sample means as in Subsection 4.2, and therefore we will

from now on, unless explicitly stated often let
N

(m)
t
m be denoted by N̄

(m)
t , that is

N̄
(m)
t =

1

m
N

(m)
t . (4.3.1)

and with the notation in (4.3.1) we then for any integer k with k ≤ m have that

P

[

N
(m)
t ≥ k

]

= P

[

N̄
(m)
t ≥ k/m

]

. (4.3.2)

With the notation and setup from Subsection 4.2, we next state the following theorem, which gives

analytical expressions for the tail probabilities of
N

(m)
t
m where N

(m)
t is defined as in Subsection 3.2.

Theorem 4.1. Consider a homogeneous credit portfolio with m entities with default intensities λi(Xt) =
λ(Xt) and default times τi generated via (3.1.1). Define Zt and p(Zt) as in (3.2.1). Then, with notation
as above, for 0 ≤ x ≤ 1

P

[

N̄
(m)
t ≥ x

∣
∣
∣FX

∞
]

= H
(LR)
B (x,m, p(Zt)) +O(m−3/2) . (4.3.3)

and thus
P

[

N̄
(m)
t ≥ x

]

= E

[

H
(LR)
B (x,m, p(Zt))

]

+O(m−3/2) (4.3.4)

where

E

[

H
(LR)
B (x,m, p(Zt))

]

=

∫ ∞

0
H

(LR)
B (x,m, p(z)) fZt(z) dz (4.3.5)

and fZt(z) is the density to the random variable Zt defined as in (3.2.1). Furthermore, the mapping

H
(LR)
B (x,m, p) is for 0 < x < 1 defined as

H
(LR)
B (x,m, p) = 1− Φ (ŵB) + ϕ (ŵB)

(
1

ẑB
− 1

ŵB

)

(4.3.6)

where Φ (x) and ϕ (x) are the distribution function and density to a standard normal random variable and
for 0 < x < 1 and x 6= p we have

ŵB = ŵB(x,m, p) = sgn (ŵB)

√

2m

(

x ln

(
x(1− p)

(1− x)p

)

− ln

(
1− p

1− x

))

(4.3.7)

with

sgn (ŵB) = sgn

(
x(1− p)

(1− x)p
− 1

)

(4.3.8)

where

ẑB = ẑB(x,m, p) =
√

mx(1− x)

(

1− (1− x)p

x(1− p)

)

(4.3.9)
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for 0 < x < 1 and x 6= p. Finally, for x = 0 and x = 1 we define the mapping H
(LR)
B (x,m, p) as

H
(LR)
B (0,m, p) = 1 and H

(LR)
B (1,m, p) = pm . (4.3.10)

Proof. As pointed out in Equation (3.2.10), for a homogeneous credit portfolio with m entities with
default intensities λi(Xt) = λ(Xt) and default times τi generated via (3.1.1), then conditional on the

information FX
∞ the random variable N

(m)
t will for each fixed t be a mixed binomial random variable.

Hence, conditional on the information FX
∞, and for a fixed t, we can repeat the saddlepoint procedure for

binomial models presented in Subsection 4.2. More specific, in Subsection 4.2 let Xi be replaced by 1{τi≤t},

X̄m with
N

(m)
t
m and p with p(Zt), where τi is generated via (3.1.1) for default intensities λi(Xt) = λ(Xt)

and p(Zt) is defined as in (3.2.1) and N
(m)
t is given by (2.1), that is N

(m)
t =

∑m
i=1 1{τi≤t}. Next, let τ

have the same distribution as τ1, . . . , τm in our homogeneous credit portfolio. Then, for a fixed t, we can
define a conditional moment-generation function and cumulative generating functions Mτ,t

(
s
∣
∣FX

∞
)
and

Kτ,t

(
s
∣
∣FX

∞
)
to the Bernoulli random variable 1{τ≤t} as

Mτ,t

(
s
∣
∣FX

∞
)
= E

[
es1{τ≤t}

∣
∣FX

∞
]

(4.3.11)

and

Kτ,t

(
s
∣
∣FX

∞
)
= lnMτ,t

(
s
∣
∣FX

∞
)

(4.3.12)

where we assume that Mτ,t

(
s
∣
∣FX

∞
)
and Kτ,t

(
s
∣
∣FX

∞
)
are well defined for some suitable range of s, which

is standard to do in the saddlepoint literature, see e.g the comments after Equation (2.1) on p.38 in
Daniels (1987). Just as (4.2.1)-(4.2.2), straightforward computations gives

Mτ,t

(
s
∣
∣FX

∞
)
= 1− p(Zt) + p(Zt)e

s and K
′

τ,t

(
s
∣
∣FX

∞
)
=

p(Zt)e
s

1− p(Zt) + p(Zt)es
(4.3.13)

and

K
′′

τ,t

(
s
∣
∣FX

∞
)
=

p(Zt) (1− p(Zt)) e
s

(1− p(Zt) + p(Zt)es)
2 (4.3.14)

where p(Zt) is defined as in (3.2.1). Furthermore, the solution to ŝ = ŝ(x) to the equationK
′

τ,t

(
s
∣
∣FX

∞
)
= x

is then given by

eŝ =
x (1− p(Zt))

(1− x)p(Zt)
or, equivalently ŝ = ln

(
x (1− p(Zt))

(1− x)p(Zt)

)

for 0 < x < 1 (4.3.15)

and some calculations gives that K
′′

τ,t

(
ŝ
∣
∣FX

∞
)
= x(1−x) where we remind that

N
(m)
t
m by construction will

have support on 0 ≤ x ≤ 1. Now, with the equations (4.3.13) - (4.3.15) we can, for a fixed t and conditional
on the information FX

∞, immediately apply a conditional version of the Lugannani-Rice formula for lattice

random variables applied to the conditional binomial distribution N
(m)
t via the Equations (4.2.3) - (4.2.6)

and with the notation in (4.3.1) to obtain for 0 < x < 1

P

[

N̄
(m)
t ≥ x

∣
∣
∣FX

∞
]

= H
(LR)
B (x,m, p(Zt)) +O(m−3/2) (4.3.16)

where the function H
(LR)
B (x,m, p) is defined as in (4.2.7) and with ŵB = ŵB(x, p,m) and ẑB = ẑB(x, p,m)

are specified as in (4.2.4)-(4.2.6). Thus, (4.3.16) is a conditional version of (4.2.3)-(4.2.7) with the constant
p in (4.2.3)-(4.2.7) now replaced with the random variable p(Zt) defined as in (3.2.1) and where the condi-

tioning is done with respect to the filtration FX
∞. If x = 0 we obviously have that P

[

N̄
(m)
t ≥ 0

∣
∣
∣FX

∞
]

= 1

which in view of (4.3.16) motivates why we define H
(LR)
B (x,m, p) at x = 0 as

H
(LR)
B (0,m, p) = 1 . (4.3.17)

Next, let us consider the case x = 1. First, note that

P

[

N̄
(m)
t ≥ 1

∣
∣
∣FX

∞
]

= P

[

N
(m)
t = m

∣
∣
∣FX

∞
]

(4.3.18)

and recall from (3.2.9) that

P

[

N
(m)
t = k

∣
∣
∣FX

∞
]

=

(
m

k

)

p(Zt)
k (1− p(Zt))

m−k (4.3.19)
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for every k = 0, 1, . . . ,m. So letting k = m in (4.3.19) we get that

P

[

N
(m)
t = m

∣
∣
∣FX

∞
]

= p(Zt)
m . (4.3.20)

Then, (4.3.18) and (4.3.20) imply that

P

[

N̄
(m)
t ≥ 1

∣
∣
∣FX

∞
]

= p(Zt)
m . (4.3.21)

which in view of (4.3.16) motivates why we define H
(LR)
B (x,m, p) at x = 1 as

H
(LR)
B (1,m, p) = pm . (4.3.22)

Hence, (4.3.17) and (4.3.22) proves (4.3.10). Finally, from (4.3.16) we immediately get that

P

[

N̄
(m)
t ≥ x

]

= E

[

H
(LR)
B (x,m, p(Zt))

]

+O(m−3/2) (4.3.23)

where

E

[

H
(LR)
B (x,m, p(Zt))

]

=

∫ ∞

0
H

(LR)
B (x,m, p(z)) fZt(z) dz (4.3.24)

where fZt(z) is the density to the random variable Zt defined as in (3.2.1) andH
(LR)
B (x,m, p) for 0 < x < 1

is given in (4.2.7) with ŵB = ŵB(x, p,m) and ẑB = ẑB(x, p,m) specified as in (4.2.4)-(4.2.6) and for x = 0,

x = 1 the mapping H
(LR)
B (x,m, p) is defined as in (4.3.10). This proves (4.3.3)-(4.3.10) which concludes

the theorem.
�

In connection we the results in Theorem 4.1 we now make some remarks.

Remark 4.2. Note that in Theorem 4.1 and its proof we can everywhere replace FX
∞ with FX

t due to the
same observations as in Remark 3.2. In particular, Equation (4.3.3) can then be rephrased as

P

[

N̄
(m)
t ≥ x

∣
∣
∣FX

t

]

= H
(LR)
B (x,m, p(Zt)) +O(m−3/2) . (4.3.25)

since

P

[

N̄
(m)
t ≥ x

∣
∣
∣FX

t

]

= E

[

1{
N̄

(m)
t ≥x

}

∣
∣
∣
∣
FX
t

]

= E

[

E

[

1{
N̄

(m)
t ≥x

}

∣
∣
∣
∣
FX
∞

] ∣
∣
∣
∣
FX
t

]

= E

[

P

[

N̄
(m)
t ≥ x

∣
∣
∣FX

∞
] ∣
∣
∣FX

t

]

= P

[

H
(LR)
B (x,m, p(Zt))

∣
∣
∣FX

t

]

+O(m−3/2)

= H
(LR)
B (x,m, p(Zt)) +O(m−3/2)

where the forth equality is due to (4.3.3) and the last equality follows from the fact that H
(LR)
B (x,m, p(Zt))

is FX
t -measurable.

Remark 4.3. Note that saddlepoint approximation formulas for P
[

N̄
(m)
t ≥ x

∣
∣
∣FX

∞
]

and P

[

N̄
(m)
t ≥ x

]

via

the Equations (4.3.3) and (4.3.4)-(4.3.5) in Theorem 4.1 are specified for arbitrary values for x where
0 ≤ x ≤ 1, and these approximations are continuous function in x on the interval 0 ≤ x ≤ 1. However, we

remind that the random variable N̄
(m)
t specified in (4.3.1) and used in Theorem 4.1 is a discrete distribution

having support on the lattice
{
0, 1

m ,
2
m , . . . ,

m−1
m , mm

}
. The formulas (4.3.3) and and (4.3.4)-(4.3.5) in

Theorem 4.1 will be decreasing and well-defined functions when x lies in the lattice
{
0, 1

m ,
2
m , . . . ,

m−1
m , mm

}
,

which will be seen in our numerical studies in Section 8 and Section 9, but this is also clearly indicated
in the standard binomial case as displayed in Figure 1 and Figure 2.

Remark 4.4. Regarding the case x = p. Observe that in Theorem 4.1 we made the assumption that

x 6= p when using H
(LR)
B (x,m, p) given by (4.2.7) with ŵB = ŵB(x, p,m) and ẑB = ẑB(x, p,m) specified

as in (4.2.4)-(4.2.6). In practice the case x = p will never be a problem for conditional binomial models.

To see this, we note that the expected value E
[

H
(LR)
B (x,m, p(Zt))

]

given by (4.3.24) is in practice always

computed by numerical quadrature. More specific, if fZt(z) is the density to the random variable Zt
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defined as in (3.2.1), then we consider a mesh z1 < z2 < . . . zJC and approximate E

[

H
(LR)
B (x,m, p(Zt))

]

via the relation

E

[

H
(LR)
B (x,m, p(Zt))

]

=

∫ ∞

0
H

(LR)
B (x,m, p(z)) fZt(z) dz ≈

JC∑

n=1

H
(LR)
B (x,m, p(zn)) fZt(zn)∆zn. (4.3.26)

If it happens that x = p(zn) for one of the points zn in the mesh z1 < z2 < . . . zJC used in (4.3.26), we
can simply remove this point zn since if the mesh is large, then removing one of the terms in the sum in

(4.3.26) will hardly change the accuracy of the approximation to E

[

H
(LR)
B (x,m, p(Zt))

]

. Alternatively,

one can replace the point zn in the mesh it with another approximating point z̃n close to zn such that
x 6= p(z̃n). Finally, if one really want to use the mesh without changing the points in the case x = p(zn),

there are ways to deal with this issue by using one of the so called continuity corrections to H
(LR)
B (x,m, p),

see e.g. Subsection 1.2.3 - 1.2.7 on pp.17-28 in Butler (2007).

Theorem 4.1 next implies the following corollary which allows us to efficiently compute P
[

N
(m)
t = k

∣
∣
∣FX

∞
]

for arbitrary k = 0, 1, 2, . . . ,m and this corollary also introduces notation that will be used in the rest of
this paper.

Corollary 4.5. Consider a homogeneous credit portfolio with m entities with default intensities λi(Xt) =
λ(Xt) and default times τi generated via (3.1.1). Define Zt and p(Zt) as in (3.2.1). Then, with notation
as above, for any integer k = 0, 1, 2, . . . ,m

P

[

N
(m)
t = k

∣
∣
∣FX

∞
]

= ∆H
(LR)
B (k,m, p(Zt)) +O(m−3/2) (4.3.27)

and thus

P

[

N
(m)
t = k

]

= E

[

∆H
(LR)
B (k,m, p(Zt))

]

+O(m−3/2) (4.3.28)

where ∆H
(LR)
B (k,m, p(Zt)) is defined as

∆H
(LR)
B (k,m, p(Zt)) =

{

H
(LR)
B

(
k
m ,m, p(Zt)

)
−H

(LR)
B

(
k+1
m ,m, p(Zt)

)
for k ≤ m− 1

p(Zt)
m for k = m

(4.3.29)

and H
(LR)
B (x,m, p) is given by (4.3.6)-(4.3.10) in Theorem 4.1.

Proof. For any integer k = 1, 2, . . . ,m− 1 we obviously have that

P

[

N
(m)
t = k

∣
∣
∣FX

∞
]

= P

[

N
(m)
t ≥ k

∣
∣
∣FX

∞
]

− P

[

N
(m)
t ≥ k + 1

∣
∣
∣FX

∞
]

(4.3.30)

and thus

P

[

N
(m)
t = k

∣
∣
∣FX

∞
]

= P

[

N̄
(m)
t ≥ k

m

∣
∣
∣
∣
FX
∞

]

− P

[

N̄
(m)
t ≥ k + 1

m

∣
∣
∣
∣
FX
∞

]

. (4.3.31)

Next, for k ≤ m−1 so that k+1
m ≤ 1 we can apply (4.3.3) in Theorem 4.1 to the right hand side of (4.3.31)

to obtain that

P

[

N
(m)
t = k

∣
∣
∣FX

∞
]

= H
(LR)
B

(
k

m
,m, p(Zt)

)

−H
(LR)
B

(
k + 1

m
,m, p(Zt)

)

+O(m−3/2) (4.3.32)

and H
(LR)
B (x,m, p) is for 0 < x < 1 given by Equation (4.3.6) and by (4.3.10) when x = 0 or x = 1, in

Theorem 4.1. Next, for k = m we obviously have that

P

[

N
(m)
t = m

∣
∣
∣FX

∞
]

= P

[

N
(m)
t ≥ m

∣
∣
∣FX

∞
]

= P

[

N̄
(m)
t ≥ 1

∣
∣
∣FX

∞
]

(4.3.33)

so H
(LR)
B (x,m, p) given by (4.3.6) for x = 1 together with (4.3.10) in Theorem 4.1 and Equation (4.3.33)

then renders that

P

[

N
(m)
t = m

∣
∣
∣FX

∞
]

= H
(LR)
B (1,m, p(Zt)) = p(Zt)

m . (4.3.34)

Finally, for k = m− 1 we have, just as in (4.3.31) that

P

[

N
(m)
t = m− 1

∣
∣
∣FX

∞
]

= P

[

N̄
(m)
t ≥ m− 1

m

∣
∣
∣
∣
FX
∞

]

− P

[

N̄
(m)
t ≥ 1

∣
∣
∣FX

∞
]

. (4.3.35)
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and the second term in the right hand side of (4.3.35) is computed as in (4.3.34) while the first term in

the right hand side of (4.3.35) is given by H
(LR)
B

(
m−1
m ,m, p(Zt)

)
+O(m−3/2) which implies that

P

[

N
(m)
t = m− 1

∣
∣
∣FX

∞
]

= H
(LR)
B

(
m− 1

m
,m, p(Zt)

)

−H
(LR)
B (1,m, p(Zt)) +O(m−3/2) (4.3.36)

where H
(LR)
B (x,m, p) is for 0 < x < 1 given by Equation (4.3.6) in Theorem 4.1 and for x = 1, by (4.3.10)

in Theorem 4.1, so that (4.3.36) can be restated as

P

[

N
(m)
t = m− 1

∣
∣
∣FX

∞
]

= H
(LR)
B

(
m− 1

m
,m, p(Zt)

)

− p(Zt)
m +O(m−3/2) . (4.3.37)

Finally, for any integersm and k with 0 < k ≤ m and any p ∈ (0, 1) we define the mapping ∆H
(LR)
B (k,m, p)

as

∆H
(LR)
B (k,m, p(Zt)) =

{

H
(LR)
B

(
k
m ,m, p(Zt)

)
−H

(LR)
B

(
k+1
m ,m, p(Zt)

)
for k ≤ m− 1

p(Zt)
m for k = m

. (4.3.38)

Hence, (4.3.38) will then together with (4.3.32), (4.3.34) and (4.3.36) (or (4.3.37)) imply that

P

[

N
(m)
t = k

∣
∣
∣FX

∞
]

= ∆H
(LR)
B (k,m, p(Zt)) +O(m−3/2)

which proves the formulas (4.3.27) and (4.3.29). Finally, (4.3.28) is obtained by taking expected value of
(4.3.27), which concludes the corollary. �

Remark 4.6. Note that, by similar arguments as in Remark 4.2 we can everywhere replace FX
∞ with FX

t

everywhere in Corollary 4.5, and in particular in (4.3.27) so that

P

[

N
(m)
t = k

∣
∣
∣FX

t

]

= ∆H
(LR)
B (k,m, p(Zt)) +O(m−3/2) (4.3.39)

where ∆H
(LR)
B (k,m, p(Zt)) is defined as in (4.3.29).

In Section 11 we will perform numerical testes of the algorithm in Corollary 4.5, and there we show

that the saddlepoint method for P

[

N
(m)
t = k

]

is as good, of often even better than using e.g. built in

software routines computing P

[

N
(m)
t = k

]

.

The saddlepoint approach introduced in Theorem 4.1 and Corollary 4.5 will produce a method of

order O(1) when computing P

[

N
(m)
t ≥ x

∣
∣
∣FX

∞
]

and thus also O(1) for computing P

[

N
(m)
t = k

∣
∣
∣FX

∞
]

.

Hence, for a portfolio with m obligors, our approach will therefore for computing the whole distribution

P

[

N
(m)
t = k

∣
∣
∣FX

∞
]

, that is for all k = 0, 1, . . . ,m, be of order O(m), i.e. linear in the portfolio size m,

which is an dramatic improvement compared with the quadratic, O(m2), recursive algorithm introduced
in Andersen et al. (2003). Another advantage with our saddlepoint approach is that it leads to explicit

formulas for P

[

N
(m)
t ≥ x

∣
∣
∣FX

∞
]

and thus also for P

[

N
(m)
t = k

∣
∣
∣FX

∞
]

in terms of x, k,m and the FX
∞-

conditional individual default probability p(Zt) defined as in (3.2.1).
Besides the recursive algorithms discussed in e.g. Andersen et al. (2003) and Andersen & Sidenius

(2004), there also exists Fourier methods where the characteristic function for the loss distribution is
directly derived and used with Fourier inversion methods such as the FFT method and such techniques
are discussed in e.g. Gregory & Laurent (2003) and Gregory & Laurent (2005). However, as pointed
out in Andersen et al. (2003), such Fourier inversion methods seems to be much slower than recursive
algorithms developed in Andersen et al. (2003) and Andersen & Sidenius (2004). For example, on p.68
in Andersen et al. (2003) the authors remark that they conducted numerical examples where the Fourier
method could be up to 25 times slower than the recursive algorithm. Given that our saddlepoint approach
has linear complexity in terms of the portfolio size, compared to the quadratic complexity of the recursive
algorithms in Andersen et al. (2003), we therefore conclude that or method should also be much faster
than the Fourier inversion methods proposed in Gregory & Laurent (2003) and Gregory & Laurent (2005).

While Theorem 4.1 and Corollary 4.5 are focusing on intensity based conditional independent exchange-
able models it is easy to see that the results in these theorems also will hold for other type of conditional
independent exchangeable models, for example conditional factor models. This will be discussed in the
next section, that is Section 5.
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5. The saddlepoint approach for homogeneous credit portfolio loss distributions in
conditional factor based models

In Section 4 we presented efficient formulas for the tail-distribution to the number of defaults N
(m)
t

in conditional independent homogeneous models where the default times were constructed in an inten-
sity based settings. While Theorem 4.1 and Corollary 4.5 are focusing on intensity based conditional
independent exchangeable models it is easy to see that the results in these theorems also will hold for
other type of conditional independent exchangeable models, for example conditional factor models, dis-
cussed in e.g Gordy (2002), Gregory & Laurent (2005), Huang et al. (2007) and Martin (2011), which
includes the dynamic Gaussian one-factor model often used in the credit literature. For such factor mod-

els, we simply replace P

[

N
(m)
t ≥ x

∣
∣
∣FX

∞
]

and P

[

N
(m)
t = k

∣
∣
∣FX

∞
]

in Theorem 4.1 and Corollary 4.5 with

P

[

N
(m)
t ≥ x

∣
∣
∣Z
]

and P

[

N
(m)
t = k

∣
∣
∣Z
]

for some static factor Z, and that will be the topic of this section.

First, we give a brief and general discussion about factor copula models. Then, Subsection 5.1 treats the
very common one-factor Gaussian copula model while Subsection 5.2 considers so called Archimedean
copulas where we focus on the so-called Clayton copula. Finally, Subsection 5.3 shows how the results
from Subsection 4.3 can be applied to the factor copula models presented in this section.

In this section we consider the distribution of N
(m)
t when the default times τ1, . . . , τm are driven by

factor copulas in a homogeneous credit portfolio, meaning that there exists a time-invariant random
variable Z and a mapping p(t, z) such that 0 ≤ p(t, z) ≤ 1 for all t ≥ 0 and z ∈ R with

P [τi ≤ t |Z] = p(t, Z) (5.1)

for all obligors i and conditional on Z then τ1, . . . , τm are independent, that is

P [τ1 ≤ t1, τ2 ≤ t2, . . . , τm ≤ tm |Z] =
m∏

i=1

P [τi ≤ ti |Z] (5.2)

for all t1 ≥ 0, . . . , tm ≥ 0. Hence, (5.1)-(5.2) implies a homogeneous conditional independent portfolio
credit model and there exists several widely used such so called factor copula models. Below we specify
two such factor copula models. Since we in this paper will only focus on homogeneous portfolios then the
marginal default probabilities Fi (t) = P [τi ≤ t] will be same for all obligors and we will for notational
convenience write F (t) = Fi (t) for the marginal default probabilities at time t.

5.1. The one-factor Gaussian copula model. The one-factor Gaussian copula model is probably the
most famous factor copula model and it works both for heterogenous and homogeneous credit portfolios,
see e.g. in Li (2000), Gregory & Laurent (2005), Gregory & Laurent (2003), Andersen & Sidenius (2004),
Crépey, Jeanblanc & Wu (2013) and McNeil et al. (2005). Here we only focus on homogeneous portfolios
and let F (t) be the marginal default probability at time t same for obligors with default times τ1, . . . , τm,
that is F (t) = P [τi ≤ t]. Let Z be an standard normal random variable. Then, in the homogeneous
one-factor Gaussian copula model the conditional marginal default probabilities P [τi ≤ t |Z] satisfy

P [τi ≤ t |Z] = Φ

(
Φ−1 (F (t))−√

ρZ√
1− ρ

)

(5.1.1)

where ρ is the so-called correlation-parameters which is a constant such that ρ ∈ [0, 1] and Φ(x) denotes the
distribution function to a standard normal random variable. Furthermore, one can show that conditional
on Z then τ1, . . . , τm are independent, that is (5.2) will hold. Thus, from (5.1.1) and in view of the
notation in (5.1) we have that

p(t, Z) = Φ

(
Φ−1 (F (t))−√

ρZ√
1− ρ

)

. (5.1.2)

For more about the one-factor Gaussian copula model see e.g. in Li (2000), Gregory & Laurent (2005),
Gregory & Laurent (2003), Andersen & Sidenius (2004), Crépey et al. (2013) and McNeil et al. (2005).

5.2. Archimedean copulas. There exists many types of copula functions, and applications of these in
portfolio credit risk (both static and dynamic) has been a huge topic in academia and the industry, the
last 25 years. In this subsection we consider so called Archimedean copulas, see e.g. Schönbucher (2002),
Schönbucher (2003), McNeil et al. (2005), Burtschell, Gregory & Laurent (2009) or Hofert & Scherer
(2011).
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Here we only focus on homogeneous portfolios and let F (t) be the marginal default probability at
time t same for obligors with default times τ1, . . . , τm, that is F (t) = P [τi ≤ t]. Let Z be a non-negative
random variable with Laplace-transform LZ(x) and define the function ψ(x) as the inverse of LZ(x), that
is ψ(x) = L−1

Z (x). Then, in the homogeneous Archimedean copula model for a homogeneous portfolio
credit risk, the conditional marginal default probabilities P [τi ≤ t |Z] satisfy

P [τi ≤ t |Z] = exp (−Zψ(F (t))) (5.2.1)

and one can show that conditional on Z then τ1, . . . , τm are independent, that is (5.2) will hold. Thus,
from (5.2.1) and in view of the notation in (5.1) we have that

p(t, Z) = exp (−Zψ(F (t))) . (5.2.2)

The choice of the non-negative variable Z is often done so that its Laplace-transform and its inverse
are given in closed form, that is, ψ(x) and ψ−1(x) are analytic. Three examples for Z are often used in
the credit literature, namely the so called Clayton copula, Gumbel copula and Frank copula, see e.g. in
Schönbucher (2002), Schönbucher (2003) or McNeil et al. (2005). Let us here briefly mention the Clayton
copula, which often is used in CDO pricing, see e.g. in Burtschell et al. (2009) or Hofert & Scherer (2011).

5.2.1. The Clayton copula. Recall that a non-negative random variable is said to be a gamma-distributed

with parameters a and b if its density f(x) is given by f(x) = xa−1e−x/b

baΓ(a) for x ≥ 0 where Γ(a) is the gamma

function. Let Z be a gamma-distributed random variable with parameters a = 1
θ and b = 1 so that its

density fZ(z) is given by

fZ(z) =
z

1−θ
θ e−z

Γ
(
1
θ

) for z ≥ 0 .

The Laplace-transform of Z is then (1 + s)−
1
θ and its inverse, denoted by ψ(x) is then given by ψ(x) =

(
x−θ − 1

)
. Now, consider a factor copula credit model created by the Archimedean Clayton copula with

generator ψ(x) =
(
x−θ − 1

)
. Then, in view of (5.2.2) we get

P [τi ≤ t |Z] = exp
(

Z
(

1− F (t)−θ
))

(5.2.1.1)

that is, in view of the notation in (5.1) we have that

p(t, Z) = exp
(

Z
(

1− F (t)−θ
))

(5.2.1.2)

see e.g. in Burtschell et al. (2009) or Hofert & Scherer (2011).

5.3. The saddlepoint approach for homogeneous credit portfolio loss distributions in condi-

tional factor based models. In view of (5.1)-(5.2) we have a homogeneous conditional independent

portfolio credit model, that is conditional on Z then N
(m)
t will for a fixed timepoint t be a mixed binomial

random variable, or equivalently, conditional on Z then {1{τi≤t}}mi=1 is an i.i.d Bernoulli sequence with
probability p(t, Z). Hence, conditional on Z we can apply Lugannani-Rice formula for binomial distribu-

tions to find sharp approximations to P

[

N̄
(m)
t ≥ x

∣
∣
∣Z
]

in terms of x, p(t, Z),m and also P

[

N̄
(m)
t ≥ x

]

in terms of density or probability function to Z etc. We can therefore state the following corollary to
Theorem 4.1 and Corollary 4.5.

Corollary 5.1. Let Z be a random variable and consider a homogeneous credit portfolio with m entities
with default times τ1, . . . , τm that satisfy (5.1)-(5.2) and having conditional default probabilities given by
p(t, Z). Then, with notation as above, for 0 ≤ x ≤ we have

P

[

N̄
(m)
t ≥ x

∣
∣
∣Z
]

= H
(LR)
B (x,m, p(t, Z)) +O(m−3/2) (5.3.1)

and

P

[

N̄
(m)
t ≥ x

]

= E

[

H
(LR)
B (x,m, p(t, Z))

]

+O(m−3/2) (5.3.2)

where the mapping H
(LR)
B (x,m, p) is given by (4.3.6)-(4.3.10) in Theorem 4.1. Furthermore, for any

integer k such that 0 ≤ k ≤ m we have

P

[

N
(m)
t = k

∣
∣
∣Z
]

= ∆H
(LR)
B (k,m, p(t, Z)) +O(m−3/2) (5.3.3)
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and thus

P

[

N
(m)
t = k

]

= E

[

∆H
(LR)
B (k,m, p(t, Z))

]

+O(m−3/2) (5.3.4)

where ∆H
(LR)
B (k,m, p(t, Z)) is defined as in (4.3.29) in Corollary 4.5.

Proof. The proofs to (5.3.1) and (5.3.3) are obtained by replacing the filtration FX
∞ and mapping p(Zt)

in Theorem 4.1 and Corollary 4.5 with the sigma-algebra σ(Z) and mapping p(t, Z) in (5.1), and then
follow the same steps as in Theorem 4.1 and Corollary 4.5. Furthermore, (5.3.2) and (5.3.4) are obtained
by taking expected value of (5.3.1) and (5.3.3). �

Remark 5.2. Example with one-factor Gaussian copula. If we for example consider the one-factor
Gaussian copula model where p(t, Z) is given by (10.1.1) and Z is a standard normal random variable,
then according to (5.3.2) in Corollary 5.1, we have for 0 < x < 1 that

P

[

N̄
(m)
t ≥ x

]

=

∫ ∞

−∞
H

(LR)
B (x,m, p(t, z))

1√
2π
e−

z2

2 dz +O(m−3/2) (5.3.5)

and (5.3.4) in Corollary 5.1 implies that for any integer k such that 0 ≤ k ≤ m we have

P

[

N
(m)
t = k

]

=

∫ ∞

−∞
∆H

(LR)
B (k,m, p(t, z))

1√
2π
e−

z2

2 dz +O(m−3/2) (5.3.6)

where the mappings H
(LR)
B (x,m, p) and ∆H

(LR)
B (k,m, p) are defined as in Corollary 5.1. Note that the

integrals in (5.3.5) and (5.3.6) are very easy and straithforward to numerically evaluate. Furthermore, for
the case x = p(t, z) in (5.3.5) we use exactly the same arguments as in Remark 4.4.

Remark 5.3. Adopting the saddlepoint to static credit portfolio models It is easy to see that
the technique presented in Section 4 and 5 also can be adapted to static credit portfolio models, such
as those presented in Frey & McNeil (2002), Frey & McNeil (2003), Lando (2004), McNeil et al. (2005)
and Herbertsson (2018). In such static credit portfolio models, we here focus on so called mixed binomial
models which works as follows. Let Z be a random variable (discrete or continuous) and let p(x) ∈ [0, 1]
be a function such that the random variable p(Z) is well-defined. Let X1,X2, . . . Xm be identically
distributed random variables such that Xi = 1 if obligor i defaults before time T and Xi = 0 otherwise.
Furthermore, conditional on Z, the random variables X1,X2, . . . Xm are independent and each Xi have
default probability p(Z), that is

p(Z) = P [Xi = 1 |Z] . (5.3.7)

The economic intuition behind this randomizing of the default probability p(Z) is that Z should represent
some common background variable affecting all obligors in the portfolio. Many static mixed binomial
models can be obtained directly from their continuous time factor versions by defining Xi and p(Z) as

Xi = 1{τi≤T} so that p(Z) = p(T,Z) = P [τi ≤ T |Z] (5.3.8)

where for example the mapping p(T,Z) can be given by (5.1.1) or (5.2.2) and where we remind that
T is fixed. Now, by defining Nm as the number of defaults in the portfolio up to time T , that is
Nm =

∑m
i=1Xi, we can for such mixed binomial models directly apply a version of Corollary 5.1 to find

very sharp approximations to the quantities P [Nm ≥ x |Z] and P [Nm = k |Z] and thus P [Nm ≥ x] and
P [Nm = k].

6. Extensions to heterogeneous portfolios

In this section we will give a very brief outline of how to expand our saddlepoint method for computing

the default distribution P

[

N
(m)
t = k

]

to a heterogeneous portfolio. A related discussion can be found e.g in

Section 2 in Papageorgiou & Sircar (2009) where the main idea is to split the heterogeneous portfolio into
smaller homogeneous subportfolios. In this paper we use similar ideas and then on each such homogeneous
subportfolio apply the results of e.g. Theorem 4.1, Corollary 4.5 or Corollary 5.1. Thus, below we present
the main idea borrowed from e.g. Papageorgiou & Sircar (2009), and we begin with apply it to the case
where the main portfolio is split in two homogeneous subportfolios. We first show the method for an
intensity based setting as outlined in Section 3, and then also present the technique in the case with
factor models as given in Section 5. Finally, we briefly discuss the case with more than two subportfolios.

Thus, assume that we can split our portfolio of m entities/obligors into two homogeneous subportfolios

containing m1 and m2 entities where m = m1 +m2. Then we have that N
(m)
t = N

(m1)
t + N

(m2)
t where
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N
(mi)
t is the number of defaults in subportfolio i, where i = 1, 2. Furthermore, we assume that each

subportfolio is homogeneous, but the parameters for the two portfolios are different. We can also assume
that underlying processes Xi

t driving all the individual default intensities λi(X
i
t), which are same for all

obligors in subportfolio i, are either correlated, or independent. However, for ease of exposure of the main
ideas, we will assume the same process Xt for both portfolios (which is the same assumption as done
in Section 2 of Papageorgiou & Sircar (2009)), that is X1

t = X2
t = Xt so that all the individual default

intensities in portfolio i are the same and given by λi(Xt). Thus, the default times in both portfolios
i = 1, 2 are conditional independent given the the filtration FX

∞, using the same notation as in Section 3.
Then, for any integer k between 1 and m, we have that

P

[

N
(m)
t = k

∣
∣
∣FX

∞
]

=

k∑

j=0

P

[

N
(m1)
t = j,N

(m2)
t = k − j

∣
∣
∣FX

∞
]

=
k∑

j=0

P

[

N
(m1)
t = j

∣
∣
∣FX

∞
]

P

[

N
(m2)
t = k − j

∣
∣
∣FX

∞
]

(6.1)

where the second equality in (6.1) follows from the conditional independence. Next we can apply Corollary

4.5 to each of the terms P
[

N
(mi)
t = j

∣
∣
∣FX

∞
]

for i = 1, 2 and then immediately get that

P

[

N
(m)
t = k

∣
∣
∣FX

∞
]

=
k∑

j=0

∆H
(LR)
B

(
j,m1, p(Z

1
t )
)
∆H

(LR)
B

(
k − j,m2, p(Z

2
t )
)
+O

(

max
(

m
−3/2
1 ,m

−3/2
2

))

(6.2)

where the mapping ∆H
(LR)
B (k,m, p) is defined as (4.3.29) in Corollary 4.5, and where p(Zit) is the condi-

tional default probability at time t given FX
∞, for each obligor in portfolio i and the factor Zit defined as

in Proposition 3.1, that is

Zit =

∫ t

0
λi(Xu)du and p(Zit) = 1− e−Z

i
t = P

[

τ (i) ≤ t
∣
∣
∣FX

∞
]

for i = 1, 2

where τ (i) has the same distribution as the default times for all obligors in portfolio i, which are ex-

changeable by construction. To find the unconditional distribution P

[

N
(m)
t = k

]

we integrate (6.2) over

the bivariate factors (Z1
t , Z

2
t ) which need the joint density fZ1

t ,Z
2
t
(z1, z2) and there are various of ways to

find this bivariata density, see e.g. in Section 2 of Papageorgiou & Sircar (2009).

The ideas that lead to (6.2) can also be applied to factor copula models. For example, considering a
Gaussian one-factor model, for the same portfolio structure of two subportfolio as in the example above,
and letting Z be the same factor in each portfolio i = 1, 2, then, by following the same arguments that
gave (6.2), we obtain

P

[

N
(m)
t = k

∣
∣
∣Z
]

=

k∑

j=0

∆H
(LR)
B (j,m1, p1(t, Z))∆H

(LR)
B (k − j,m2, p2(t, Z)) +O

(

max
(

m
−3/2
1 ,m

−3/2
2

))

(6.3)
with

pi(t, Z) = Φ

(
Φ−1 (Fi(t))−

√
ρiZ√

1− ρ

)

for i = 1, 2 (6.4)

where Fi(t) and ρi are the individual default probabilities at time t and correlation parameters in each

of the portfolios i = 1, 2 and pi(t, Z) = P
[
τ (i) ≤ t

∣
∣Z
]
where τ (i) has the same distribution as the default

times for all obligors in portfolio i, which are exchangeable by construction. Furthermore, in the copula

factor-model, the unconditional distribution P

[

N
(m)
t = k

]

will be much more easier obtained compared

with the intensity based setting given by (6.2), since we simply integrate over Z in (6.3) and then get

P

[

N
(m)
t = k

]

=

k∑

j=0

E

[

∆H
(LR)
B (j,m1, p1(t, Z))∆H

(LR)
B (k − j,m2, p2(t, Z))

]

+O
(

max
(

m
−3/2
1 ,m

−3/2
2

))

(6.5)
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where the expected value E

[

∆H
(LR)
B (j,m1, p1(t, Z))∆H

(LR)
B (k − j,m2, p2(t, Z))

]

is given by

E

[

∆H
(LR)
B (j,m1, p1(t, Z))∆H

(LR)
B (k − j,m2, p2(t, Z))

]

=

∫ ∞

0
∆H

(LR)
B (j,m1, p1(t, z)) ∆H

(LR)
B (k − j,m2, p2(t, z))ϕ(z) dz

(6.6)

and ϕ(z) as usual denotes the density to a standard normal random variable, that is ϕ(z) = e−z2/2√
2π

. Again,

we note that the right hand side of (6.6) is easy and parsimonious to evaluate with numerical quadrature
procedures.

In the above examples, both for the intensity based model, and the copula factor based model, we

assumed two subportfolios where m = m1+m2 and N
(m)
t = N

(m1)
t +N

(m2)
t with N

(mi)
t being the number

of defaults in subportfolio i for i = 1, 2. It is easy to see how to extend the formulas in (6.2) and (6.3)-(6.6)
to a general case with say, d different subportfolios, d ≤ m, where each subportfolio is homogeneous (i.e.
the obligors in each subportfolio are exchangeable) so that

N
(m)
t = N

(m1)
t +N

(m2)
t + . . .+N

(md)
t and m = m1 +m2 + . . .+md .

In the intensity based case, the unconditional distribution P

[

N
(m)
t = k

]

will in such a setting need the

joint distribution of the factors (Z1
t , . . . , Z

d
t ), which in some cases/models can be numerically challenging

when d > 2. However, in the one-factor Gaussian copula case it will still be straightforward to compute

P

[

N
(m)
t = k

]

for any d ≤ m, since the integration will be done over a one-dimensional integral. For

example, if d = 3 then (6.5) can be extended to

P

[

N
(m)
t = k

]

=

k∑

j1=0

k−j1∑

j2=0

E

[

∆H
(LR)
B (j1,m1, p1(t, Z))∆H

(LR)
B (j2,m2, p2(t, Z))∆H

(LR)
B (k − j1 − j2,m3, p3(t, Z))

]

+O
(

max
(

m
−3/2
1 ,m

−3/2
2 ,m

−3/2
3

))

(6.7)

where each expected value in the dubble-sum in (6.7) is evaluated in the same way as in Equation (6.6).

7. Applications to equity risk management: Value-at-Risk for large homogeneous stock
portfolios with jumps at exogenous defaults

There exists a huge amount of applications where the distributions P

[

N
(m)
t ≥ x

]

and P

[

N
(m)
t = k

]

are used, particular in credit risk, for example risk management of credit portfolios done under the real
probability measure, but also for credit portfolio derivative pricing. For more discussions of applications

of P
[

N
(m)
t ≥ x

]

and P

[

N
(m)
t = k

]

in credit risk, see for example in Herbertsson (2023b). However, in

this paper we will focus on applications of P
[

N
(m)
t = k

]

in equity risk management in a stock price model

developed in Herbertsson (2023a) where the individual stock prices have simultaneous downward jumps at
the defaults of an exogenous group of defaultable entities, for example corporates or sovereign states. By
”exogenous” we here mean that the entities, for example companies, will not be represented in the stock
portfolio, that is stocks issued by the defaultable corporates are not present in the stock portfolio in our
studies. The default times can come from any type of credit portfolio model. In this setting Herbertsson
(2023a) derive computational tractable formulas to several stock-related quantizes, for example the loss
distributions of equity portfolios and apply it to risk management computations such as Value-at-Risk
of portfolios. For the stock portfolio case Herbertsson (2023a) considers both small-time expansions of
the loss-distribution to a heterogeneous portfolio via a linearization of the loss, but also for general time
points when the stock portfolio is large and homogeneous, where Herbertsson (2023a) utilize a conditional
version of the law of large numbers for a homogeneous stock portfolio. In the numerical examples in
Herbertsson (2023a), the credit portfolio models used are homogeneous and conditional independent and

therefore all credit related computations for P

[

N
(m)
t = k

]

done in Herbertsson (2023a) heavily rely on

efficient numerical methods developed in this paper for computing the distribution of number of defaults
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P

[

N
(m)
t = k

]

among the defaultable entities creating the jumps in the stock prices. For more numerical

details we refer to Herbertsson (2023a).
In this paper we will perform some complementary numerical studies of the stock price model developed

in Herbertsson (2023a), which are not present in Herbertsson (2023a). More specific, in Section 10 we will
present numerical results to Value-at-Risk for a large stock portfolio, as function of the default correlation
parameter in the one-factor Gaussian copula model, at different time points and for different confidence
levels. Such studies are not done in Herbertsson (2023a), and are directly dependent on efficient and fast

computations of the distribution P

[

N
(m)
t = k

]

.

In Subsection 7.1 we first give a brief introduction to the portfolio stock price model developed in
Herbertsson (2023a) where all stock prices can jump at default times belonging to an exogenous group of
defaultable entities. Then, in Subsection 7.2 we define the loss process for the stock portfolio and present
formulas for the loss distribution without proofs, where full proofs of the expressions can be found in
Herbertsson (2023a). More specific, in Subsection 7.2 we focus on large homogeneous stock portfolios,
and present convenient expression for the distribution of the portfolio loss in such settings, which are based
on the large portfolio approximations. Full proofs to the derivations can be found in Herbertsson (2023a)
and Herbertsson (2023a) also derives the stock portfolio loss distribution for heterogeneous portfolios,
which is not considered in this paper.

7.1. The stock price model. In this subsection we give a brief introduction to the portfolio stock price
model of Herbertsson (2023a) where each stock price in the equity portfolio can jump at default times
belonging to an exogenous group of defaultable entities. The dynamics of the stock prices are done under
the real (physical) probability measure P that will be used throughout the rest of this section. We start
with the following definition of the stock prices, borrowed from Herbertsson (2023a).

Definition 7.1. Consider a group of m defaultable entities C1, . . . ,Cm with individual default times

τ1, τ2 . . . , τm and let N
(m)
t =

∑m
i=1 1{τi≤t}. Let the companies A1, . . . ,AJ be J different exchangeable

entities which do not belong to the group C1, . . . ,Cm and let St,1, . . . , St,J denote the stock prices of the
companies A1, . . . ,AJ at time t under the real probability measure P. Then, for each entity Aj we define
the stock price St,j as

St,j = S0,j exp






(

µj −
1

2
σ2j

)

t+ σj

(

ρS,jWt,0 +
√

1− ρ2S,jWt,j

)

−
N

(m)
t∑

n=1

Un,j




 (7.1.1)

where Wt,0,Wt,1, . . . ,Wt,J are J +1 independent Brownian motions and ρS,j ∈ [−1, 1] are constants. Fur-
thermore, for each j = 1, 2, . . . , J the m random variables U1,j , . . . , Um,j are an i.i.d sequence distributed
as

Un,j
d
= Exp(ηj) with E [Un,j] =

1

ηj
(7.1.2)

where U1,j, . . . , Um,j are independent of the processes Wt,0,Wt,1, . . . ,Wt,J and also independent of the
default times τ1, τ2 . . . , τm. Furthermore, for each company Aj the parameters σj > 0 and µj are the
volatility and drift, same as in the one-dimensional defined in Herbertsson (2023a).

We next make some remarks connected to Definition 7.1.

Remark 7.2. We remark that the default times τ1, τ2 . . . , τm in Definition 7.1 can come from any credit
portfolio model as long as the jumps Ṽ1, . . . , Ṽm in the stock prices at the default times τ1, τ2 . . . , τm are
independent of these defaults and also independent of the Brownian motion. We can for example work
with heterogeneous or homogeneous copula based models studied in e.g. Li (2000), Gregory & Laurent
(2005), Gregory & Laurent (2003), Andersen & Sidenius (2004), Crépey et al. (2013), Burtschell et al.
(2009), Hofert & Scherer (2011) or heterogeneous or homogeneous conditional independent intensity based
models such as in Bielecki, Cousin, Crépey & Herbertsson (2014b), Bielecki et al. (2014c) and Bielecki,
Cousin, Crépey & Herbertsson (2014a) as well as heterogeneous or homogeneous contagion models studied
in e.g. Herbertsson (2005), Herbertsson (2007), Herbertsson & Rootzén (2008), Herbertsson (2008b),
Herbertsson (2008a), Herbertsson (2011), Cont, Deguest & Kan (2010), Cont & Kan (2011), Laurent,
Cousin & Fermanian (2011), Frey & Backhaus (2008) and Frey & Backhaus (2010).
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Remark 7.3. If we let Ũ1,j, . . . , Ũm,j be an i.i.d sequence with same distribution as U1,j , . . . , Um,j then the

jump term
∑N

(m)
t

n=1 Un,j in (7.1.1) can be replaced by the more intuitive expression
∑m

i=1 Ũi,j1{τi≤t}, since
∑N

(m)
t

n=1 Un,j
d
=
∑m

i=1 Ũi,j1{τi≤t}.

Remark 7.4. Note that ρS,j ∈ [−1, 1] and unless explicitly stated, we will throughout this paper always
assume that at least one company Aj has a correlation such that ρS,j 6= −1, 1 so that ρS,j ∈ (−1, 1).

Remark 7.5. In the case when there are no jump at the defaults in Definition 7.1, i.e when Un = 0 for all

n, then St,j = S
(BS)
t,j for all companies Aj with S

(BS)
t,j given by

S
(BS)
t,j = S0,j exp

((

µj −
1

2
σ2j

)

t+ σj

(

ρS,jWt,0 +
√

1− ρ2S,jWt,j

))

(7.1.3)

where Wt,0,Wt,1, . . . ,Wt,J are J + 1 independent Brownian motions and the rest of the notation is same

as in Definition 7.1. Note that S
(BS)
t,1 , . . . , S

(BS)
t,J will under (7.1.3) still be correlated via the factor process

Wt,0 and recall that ρSWt,0 +
√

1− ρ2SWt,j is a Brownian motion for each stock price S
(BS)
t,j .

Remark 7.6. The stock prices St,1, St,2, . . . , St,J are correlated and have simultaneous jumps.

Since Wt,0 and Wt,j are independent Brownian motions for each j and ρS,j ∈ [−1, 1], then from standard

probability theory we know that ρS,jWt,0 +
√

1− ρ2S,jWt,j used in (7.1.1) is also a Brownian motion.

Hence, one can prove (see e.g. Corollary 2.11 in Herbertsson (2023a)) that the dynamics of the stock
price St,j for each firm Aj satisfies

dSt,j = St−,jdYt,j (7.1.4)

where Yt,j is given by

Yt,j = µjt+ σj

(

ρS,jWt,0 +
√

1− ρ2S,jWt,j

)

+

N
(m)
t∑

n=1

(
e−Un,j − 1

)
. (7.1.5)

For a full proof of the connection between Definition 7.1 and the dynamics (7.1.4) - (7.1.5), see e.g.
in Herbertsson (2023a). Further, from the construction of St,j in (7.1.1) and Un,j in (7.1.2), stated in
Definition 7.1, the stock prices St,1, St,2, . . . , St,J will be ”correlated” via the factor process Wt,0 when

ρS,j 6= 0, and also ”correlated” via the default counting process N
(m)
t for the entities C1, . . . ,Cm. In

particular, all stock prices St,1, St,2, . . . , St,J will have a jump at the default times τ1, τ2 . . . , τm, where the
relative jumps of St,j will be different almost surely under P, although have same distribution, given by
(7.1.2). Expressions for the expected value, conditional expected value, density and distribution for each
stock price St,j is found in Herbertsson (2023a).

From Theorem 2.12 in Herbertsson (2023a) we know that

E [St] = S0e
µt
E





(
η

η + 1

)N
(m)
t



 = S0e
µt

m∑

k=0

(
η

η + 1

)k

P

[

N
(m)
t = k

]

(7.1.6)

and the relation (7.1.6) can be used when calibration the jump parameter η as will be discussed more in
Section 10.

Consider a weighted stock portfolio consisting of w1, w2, . . . , wJ stocks chosen for our portfolio at time
t = 0, where the stocks are issued by the J companies A1, . . . ,AJ with stock prices St,1, St,2, . . . , St,J that
satisfy Definition 7.1. Then we define the portfolio value Vt as

Vt =
J∑

j=1

wjSt,j . (7.1.7)

Next, we, define the portfolio loss process L
(V )
t for a general portfolio Vt at time t with reference to the

starting time 0, as

L
(V )
t = − (Vt − V0) (7.1.8)
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where we note that a gain implies that the loss L
(V )
t is negative. We are interested to compute Value-at-

Risk for L
(V )
t in our model given by Definition 7.1, that is, we want to compute

VaRα

(

L
(V )
t

)

= inf
{

y ∈ R : P
[

L
(V )
t > y

]

≤ 1− α
}

= inf
{

y ∈ R : F
L
(V )
t

(y) ≥ α
}

(7.1.9)

where F
L
(V )
t

(x) is the distribution of L
(V )
t and α is the confidence level. Unfortunately, finding analytical or

semi-analytical expressions to F
L
(V )
t

(x) is a challenging task. However, assuming that exponents in St,j will

be small for small t, then Herbertsson (2023a) uses a first order Taylor expansion of the terms St,j in a so
called equally value-weighted portfolio together with the assumption η = η1 = η2 = . . . = ηJ , to find semi-

analytical approximations to the loss process L
(V )
t , see Theorem 3.8 in Herbertsson (2023a). Furthermore,

Herbertsson (2023a) use this small-time expansions of the loss-distribution to a heterogeneous portfolio
via a linearization of the loss, in order to numerically compute the time evolution of Value-at-Risk (i.e.
VaR as function of time) for stock portfolios, for a 20-day period with one-day steps, in a setting where
the jumps in the stock prices are at default times which are generated by one-factor Gaussian copula
model.

7.2. Approximation formulas to the loss distributions for large homogeneous stock portfolios

with jumps at exogenous defaults. For larger time points t, the linear approximations to the stock
portfolio discussed in the previous subsection will fail. For example, the linearized loss may produce

VaR-values that are bigger than V0 which is impossible since by construction it will hold that L
(V )
t ≤ V0

almost surely for all t ≥ 0 under the real probability measure P. However, in certain cases we can still

find highly analytical approximation formulas for the loss distribution P

[

L
(V )
t ≤ x

]

at any time point t

and where the loss will never exceed V0, as will be seen in the next subsection. More specific, if we assume
that the stock prices St,j satisfy

S0,j = S0, µj = µ, σj = σ, and ρS,j = ρS η = ηj for all firms A1, . . . ,AJ (7.2.1)

so that the stock prices St,1, St,2, . . . , St,J become exchangeable, and if the number of stocks J in the
portfolio are ”large”, then Herbertsson (2023a) derive approximation formulas for the loss distribution

P

[

L
(V )
t ≤ x

]

which will work for arbitrary time points t, that is both for large and small time points t

and which will also guarantee that portfolio loss always will be smaller than V0 almost surely for all t ≥ 0
under the measure P.

Hence, in the rest of this section we will make two assumptions. First we assume that (7.2.1) holds
together with Definition 7.1 under the real probability measure P, with equal portfolio weights wj for
all companies A1, . . . ,AJ in the portfolio Vt. Our second assumption is that the number of stocks J in
the portfolio are ”large”. Since the stock portfolio is equally weighted, and we are primary interested in
Value-at-Risk calculation of the portfolio, then due to linearity of VaR we can without loss of generality

let wj = 1 for each stock in the portfolio and thus define the portfolio value as Vt =
∑J

j=1 St,j. Due to

the condition (7.2.1) the portfolio Vt given by will then be an equally value-weighted portfolio, see also in
Herbertsson (2023a).

Remark 7.7. Homogenization of a heterogeneous stock portfolio: Assuming a completely homoge-
neous stock portfolio so that the parameters for each stock are the same is of course an unrealistic feature.
Consider a heterogeneous stock portfolio with stocks defined as in Definition 7.1 and portfolio value V̂t
and define S0, µ, σ and ρS as the corresponding sample means of the parameters in this portfolio, that is

S0 =
1

J

J∑

j=1

S0,j µ =
1

J

J∑

j=1

µj σ =
1

J

J∑

j=1

σj and ρS =
1

J

J∑

j=1

ρS,j . (7.2.2)

Next create a homogeneous stock portfolio as in (7.2.1) with parameters S0, µ, σ and ρS given by (7.2.2)

and portfolio value Vt and where Wt,0,Wt,1, . . . ,Wt,J , N
(m)
t and Ui,j are the same as in the heterogeneous

portfolio. For such homogeneous portfolios Hofmann & Platen (2000) as well as Guan, Xiaoqing & Chong

(2003) proves that the value process V̂t for a large heterogeneous stock portfolio can be approximated
arbitrary well by Vt in L1-sense as J → ∞. Hofmann & Platen (2000) proves the result for portfolios with
only diffusions while Guan et al. (2003) extends the proof to the case where the stocks also can jump due
to Poisson processes. In view of the results of e.g. Hofmann & Platen (2000) and Guan et al. (2003) it
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is therefore still relevant to consider homogeneous stock portfolios in particular if these portfolios comes
from doing a homogenization of a heterogeneous stock portfolio as in (7.2.2).

Given the assumption that (7.2.1) is satisfied, Herbertsson (2023a) proves the following theorem.

Theorem 7.8. Let St,1, . . . , St,J be stock prices defined as in Definition 7.1 which satisfies (7.2.1) under
the real probability measure P. Then, with notation as above, we have

lim
J→∞

1

J

J∑

j=1

St,j = S0 exp

((

µ− 1

2
σ2ρ2S

)

t+ σρSWt,0

)(
η

η + 1

)N
(m)
t

a.s. under P

[

· |Wt,0, N
(m)
t

]

(7.2.3)
and

lim
J→∞

P




1

J

J∑

j=1

St,j ≤ x



 = P



S0 exp

((

µ− 1

2
σ2ρ2S

)

t+ σρSWt,0

)(
η

η + 1

)N
(m)
t

≤ x



 . (7.2.4)

Furthermore, for large J we have

P

[

L
(V )
t ≤ x

]

≈ P



JS0



1− exp

((

µ− 1

2
σ2ρ2S

)

t+ σρSWt,0

)(
η

η + 1

)N
(m)
t



 ≤ x



 for large J

(7.2.5)
and if ρS 6= 0 then for x ≤ JS0 = V0 it holds that

P

[

L
(V )
t ≤ x

]

≈ 1−
m∑

k=0

Φ







ln

((

1− x
JS0

)(
η+1
η

)k
)

−
(
µ− 1

2σ
2ρ2S
)
t

σρS
√
t







P

[

N
(m)
t = k

]

for large J

(7.2.6)
where Φ (x) is the distribution function to a standard normal random variable.

Note that loss distribution formula in (7.2.6) in Theorem 7.8 requires efficient and quick methods of

computing the number of default distribution P

[

N
(m)
t = k

]

. In Section XX we will apply the formulas in

Theorem 7.8 together with the efficient methods for P
[

N
(m)
t = k

]

derived in Corollary 4.5 and Corollary

5.1.
For ρS 6= 0, define F LPA

L
(V )
t

(x) as

F LPA

L
(V )
t

(x) = 1−
m∑

k=0

Φ







ln

((

1− x
JS0

)(
η+1
η

)k
)

−
(
µ− 1

2σ
2ρ2S
)
t

σρS
√
t







P

[

N
(m)
t = k

]

. (7.2.7)

Then, if ρS 6= 0, the large portfolio approximation formula (7.2.6) in Theorem 7.8 implies that

P

[

L
(V )
t ≤ x

]

≈ F LPA

L
(V )
t

(x) for large J . (7.2.8)

Let VaRα

(

L
(V )
t

)

defined as in (7.1.9) be the Value-at-Risk for the stock portfolio loss L
(V )
t with

confidence level α. By using the large portfolio approximation formula (7.2.6) in Theorem 7.8, that is,

relation (7.2.8), we can for large J find an approximation to VaRα

(

L
(V )
t

)

which then is given as the

unique solution x∗ to the equation F LPA

L
(V )
t

(x∗) = α, that is

VaRα

(

L
(V )
t

)

≈ (F−1)LPA
L
(V )
t

(α) for large J (7.2.9)

where (F−1)LPA
L
(V )
t

(x) denotes the inverse function to the function F LPA

L
(V )
t

(x) defined in (7.2.7). Since

F LPA

L
(V )
t

(x) = 1 for x > V0 = JS0 we see that (7.2.9) can never produce a VaR-value bigger than V0,

contrary to the linearized portfolio loss VaR-values.
In the case when there are no jumps in the stock prices at the defaults of the exogenous group of

defaultable entities in Definition 7.1, i.e when ”η = ∞” so that Un,j = 0 for all pairs n, j and thus
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St,j = S
(BS)
t,j for all companies Aj where S

(BS)
t,j is given by (7.1.3) in Remark 7.5 and if ρS 6= 0, then (7.2.3)

in Theorem 7.8 will reduce to

lim
J→∞

1

J

J∑

j=1

St,j = S0 exp

((

µ− 1

2
σ2ρ2S

)

t+ σρSWt,0

)

a.s. under the random measure P [ · |Wt,0] .

(7.2.10)
Hence, from (7.2.10) and using the same arguments as in Theorem 7.8 we then have that

P

[

L
(V )
t ≤ x

]

≈ P

[

JS0

(

1− exp

((

µ− 1

2
σ2ρ2S

)

t+ σρSWt,0

))

≤ x

]

for large J . (7.2.11)

We also note that the right hand side in (7.2.10) is on the exact same form as the stock price S
(BS)
t in

the Black-Scholes model for a single stock, under the real probability measure P with the volatility σρS .

Hence, for large J , the loss process L
(V )
t will for the case when Un,j = 0 for all n, j behave as the loss

process for one single stock which follows the Black-Scholes dynamics with volatility σρS , drift µ and
initial value JS0. In the Black-Scholes model it is possible to find an analytical expression for Value-at-
Risk of the loss-process, see for example in Herbertsson (2023a), and this observation together with the
large portfolio approximation in (7.2.11) implies that in the case with no jumps in the stock prices we get
that

VaRα

(

L
(V )
t

)

≈ JS0

(

1− exp

(

σρS
√
tΦ−1 (1− α) +

(

µ− 1

2
σ2ρ2S

)

t

))

for large J . (7.2.12)

In our numerical studies in Section 10 we will use the ”Black-Scholes” LPA VaR formula in (7.2.12) as
benchmark for the VaR-formulas obtained when using the LPA loss distribution (7.2.6) in Theorem 7.8
when the stock prices have jumps and are exchangeable.

In Section 10 we will also perform some complementary numerical studies of the stock price model
developed in Herbertsson (2023a), which are not present in Herbertsson (2023a). For example, in Section
10 we will present numerical results to Value-at-Risk for a large stock portfolio, as function of the default
correlation parameter in the one-factor Gaussian copula model, at different time points and for different
confidence levels. Such studies are not done in Herbertsson (2023a), and are directly dependent on efficient

and fast computations of the distribution P

[

N
(m)
t = k

]

. In all our VaR-computations we will apply the

formulas in Theorem 7.8 together with the efficient methods for P
[

N
(m)
t = k

]

derived in Corollary 5.1.

8. Numerical examples when the default intensity is a CIR-process

The results for the unconditional probability expressions in Theorem 4.1 and Corollary 4.5 implies that
these formulas are only relevant in practice if we are able to find analytical expressions of the density
fZt(z) to the random variable Zt defined as in (3.2.1). For many important intensity based credit models
this is possible via Fourier methods or the saddlepoint approach due to the fact that we often have
highly analytical expression for the moment generating function to the random variable Zt in terms of
the parameters describing the individual default intensity λ(Xt). Examples of such settings are the CIR
modell described in Subsection 3.1.1. In this section we provide numerical examples of Theorem 4.1
and Corollary 4.5. First, in Subsection 8.1 we present the characteristic function to the integrated CIR
process Zt and outline how we retrieve the density fZt(z) numerically. We then also display the obtained
fZt(z) for some different time points. Next, in Subsection 8.2 we use the densities fZt(z) to compute the

quantities P
[

N
(m)
t ≥ k

]

and P

[

N
(m)
t = k

]

via Theorem 4.1 and Corollary 4.5.

8.1. Characteristic functions to the integrated CIR-process and how to find their numerical

values. Let λt = λ (Xt) = Xt be a Cox-Ingersoll-Ross process (CIR-process) as presented in Subsection
(3.1.1), that is

dλt = a (µ− λt) dt+ σ
√

λtdWt (8.1.1)

where Wt is a Brownian motion under the physical probability measure P. Then it is possible to find
convenient analytical expressions for the Laplace transform, or equivalently the momentgenerating func-
tion MZt(s) (recall that the Laplace transform, is obtained from MZt(s) by replacing s with −u where

u > 0) to Zt =
∫ t
0 λ(Xu)du where Xt = λt is a CIR-process, see e.g. Theorem 9.6.4 on p.273 in Elliott &

Kopp (2005) or Proposition 6.2.4 on p.130 in Lamberton & Lapeyre (1996), see also Lemma 3.1. on pp.
1367 in Bielecki et al. (2014c). The corresponding characteristic function ϕZt(u) = E

[
eiuZt

]
is obtained
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from Laplace transform MZt(−s) by letting s = iu where i is the imaginary unit, that is i2 = −1. Hence,
ϕZt(u) = KZt(iu). Here we state the expressions for ϕZt(u) since we need it for our numerical implemen-

tations. Let Zt =
∫ t
0 λ(Xu)du where Xt = λt is a CIR-process as in (8.1.1). Then, ϕZt(u) = E

[
eiuZt

]
is

given by

ϕZt(u) = E
[
eiuZt

]
= eaµψt(u)−λ0νt(u) (8.1.2)

where

ψt(u) =
2

σ2
ln

(

2γ(u)et(a+γ(u))/2

γ(u)− a+ etγ(u)(γ(u) + a)

)

(8.1.3)

and

νt(u) =
etγ(u) (γ(u)− a)− 2iu

(
etγ(u) − 1

)

γ(u)− a+ etγ(u)(γ(u) + a)
(8.1.4)

with

γ(u) =
√

a2 − 2iuσ2 (8.1.5)

In Theorem 9.6.4 on p.273 in Elliott & Kopp (2005) and Proposition 6.2.4 on p.130 in Lamberton &
Lapeyre (1996) the authors state the Laplace transform of these expression, and not the moment gen-
eration functions. Hence, the expression in (8.1.2) is obtained by replacing the arguments in Elliott &
Kopp (2005) and Lamberton & Lapeyre (1996) with −iu, as opposed to iu for the momgentgenerating
functions.

Next, the density fZt(z) to the random variable Zt is obtained from the inversion formula

fZt(z) =
1

2π

∫ ∞

−∞
e−iuzϕZt(u) du (8.1.6)

and we also have that

P [Zt ≤ z] =
1

2
+

1

2π

∫ ∞

0

eiuzϕZt(−u)− e−iuzϕZt(u)

iu
du (8.1.7)

see e.g. p.481 in in Gil-Pelaez (1951). By differentiating (8.1.7) with respect to z and using rules for
complex conjugates etc. one can obtain a slightly more practical version of (8.1.6) given by

fZt(z) =
1

π

∫ ∞

0
Re
(
e−iuzϕZt(u)

)
du . (8.1.8)

Since ϕZt(u) is given in closed form, which is rather to quick to evaluate numerically, then a good
approximiation to fZt(z) is obtained by numerical quadrature of (8.1.8), that is,

fZt(z) ≈
1

π

IK∑

n=1

Re
(
e−iunzϕZt(un)

)
∆un . (8.1.9)

where 0 ≤ u1 < u2 < ... < uIK = K is a discritisation of some intervall [0,K] where both K and IK
typically are large numbers and ∆un = un+1 − un. In our numerical studies we notice that one often has
to have quite a large amount of terms in the sum (that is IK have to be large, and ∆un quite small),
that is, the convergence rate is slow, which is something that has been emphasized in the literature. For
example, Fang & Oosterlee (2008) and Feng & Lin (2013) remark that since the integrands in (8.1.8) -
(8.1.9) are highly oscillatory, a relatively fine grid in the discrete sum (8.1.9) has to be used in order to
obtain a good a accuracy the density fZt(z). Fortunately, since the evaluation of the integrand in the
CIR-case is quite quick it still possible to obtain a good approximation of fZt(z) in reasonable quick time,
even if we use a lot of terms in the sum. Once we obtain the values of fZt(z) on the mesh z1 < z2 < . . . zJC
which approximates the positive real line [0,∞), we can also check if it approximately holds that

JC∑

n=1

fZt(zn)∆zn ≈ 1 and

JC∑

n=1

znfZt(zn)∆zn ≈ E [Zt] = µt+
1

a
(λ0 − µ)

(
1− e−at

)
(8.1.10)

where the closed formula for E [Zt] is obtained by using that E [Zt] = E

[∫ t
0 λs ds

]

=
∫ t
0 E [λs] ds and then

use the expression for E [λs] given e.g. on p.392 in Cox, Ingersoll & Ross (1985) which leads to the formula
for E [Zt] in (8.1.10), see also p.89 in Schoutens (2003). Hence, after obtaining our discrete set {fZt(zn)}
we can check if the approximations in (8.1.10) will hold making a first verification of the Fourier inversion
method. We also note that one can compute (8.1.9) by using the fast Fourier transform FFT algorithm
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which can speed up the computations, but this will require a constraint on the relationship between the
discrete steps in the z-state and frequency space u, which in this paper not used.

8.2. Numerical examples with a default intensity following a CIR-proces. In our numerical
example we choose a CIR-process with the parameters a = 0.6, µ = 0.056, σ = 0.18 and λ0 = 0.0262 so that
the individual one-year default probability is 0.0329 computed via the expression 1− exp (A(1) −B(1)λ0)
with A(T ) and B(T ) defined as in (3.1.1.3)-(3.1.1.5), see also in Table 1.

Table 1. The parameters and related quantities for the CIR-process λt.

λt λ0 = 0.0262 a = 0.6 µ = 0.056 σ = 0.18 P [τi ≤ 1] = 0.0329 = 3.29%

We obtain fZt(z) via the Fourier inversion formula (8.1.9) on the range z ∈ [0.00005, 0.28] and then
verify that (8.1.10) holds, before proceeding with our other computations. Figure 3 shows the densities

fZt(z) to Zt =
∫ t
0 λudu for t = 4, 5, . . . , 24 months and z ∈ [0.00005, 0.28] where λt is a CIR-process with

parameters as in Table 1. Furthermore, the densities fZt(z) for t = 1, 2, 3, 4 are displayed separately
in Figure 4 due to the very high values of fZt(z) for some z-arguments, where the CIR-parameters are
same as in Table 1 and Figure 3. In Figure 5 we show the densities fZt(z) for t = 21, 22, 23, 24 months
where z ∈ [0.00005, 0.28] and where the CIR-parameters are same as in Figure 3. In Figure 3 - 5 we
write t in months, but the actual computations when finding fZt(z) are done with t measured in units of
years. So for example two, six and 24 months means that t is given by t = 2

12 ,
6
12 and t = 24

12 = 2 in our
computations.

Figure 3. The densities fZt
(z) to Zt =

∫ t

0 λudu for t = 4, 5, . . . , 24 months where λt is a CIR-
process with parameters as in Table 1. The densities fZt

(z) are obtained via the Fourier
inversion formula (8.1.8) where z ∈ [0.00005, 0.28].

Once we are equipped with fZt(z) for various time points t, we proceed with computing the quantities

P

[

N
(m)
t ≥ k

]

and P

[

N
(m)
t = k

]

via Theorem 4.1 and Corollary 4.5. First, for m = 125, the left panel in

Figure 6 displays the time evolution of the tail distribution P

[

N
(m)
t ≥ k

]

in log-scale where k = 0, ..., 125

and t = 1, 2, ..24 months when individual default times have CIR-intensities with parameters same as in
Figure 3.
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Figure 4. The densities fZt
(z) to Zt =

∫ t

0 λudu for t = 1, 2, 3, 4 months where λt is a CIR-
process with parameters as in Table 1. The densities fZt

(z) are obtained via the Fourier
inversion formula (8.1.8) where z ∈ [0.00005, 0.28].
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Figure 5. The densities fZt
(z) to Zt =

∫ t

0 λudu for t = 21, 22, 23, 24 months where λt is a CIR-
process with parameters as in Table 1. The densities fZt

(z) are obtained via the Fourier
inversion formula (8.1.8) where z ∈ [0.00005, 0.28].



30 ALEXANDER HERBERTSSON

Figure 6. The time evolution of the distribution P

[

N
(m)
t ≥ k

]

for t = 1, 2, ..24 months when

individual default times have CIR-intensities as in Table 1 where m = 125. Left

panel: in log-scale for k = 0, ..., 125. Right panel: for k = 0, ..., 18.
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Figure 7. m = 125 : The number of default distribution P

[

N
(m)
t ≥ k

]

in log-scale where k =

0, ..., 30 and t = 1, 6, 12, 24 months when individual default times have CIR-intensities
with parameters same as in Figure 3.

As can be seen in the left panel in Figure 6, the tail probabilities P

[

N
(m)
t ≥ k

]

will be quite small

for large values of k, and when k ≥ 120 then P

[

N
(m)
t ≥ k

]

is of order 10−80, which are extremely small

probabilities. Such small tail-probabilities follows from the choice of our CIR-parameters together with
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the fact that a CIR-intensity process generally produces weak default dependence. However, the tail-

probabilities P

[

N
(m)
t ≥ k

]

in the CIR-case are still much higher than in the case with constant default

probabilities, that is, for a standard binomial distribution with independent defaults, as plotted in Figure
2 with m = 125 and p = 0.0329. To see this, we can compare the left panel in Figure 2 with the

subplots in Figure 7 which displays the tail-distribution P

[

N
(m)
t ≥ k

]

in log-scale where k = 0, ..., 30 and

t = 1, 6, 12, 24 months when individual default times have CIR-intensities with parameters same as in
Figure 3. The tail-probabilities in all subplots of Figure 7 are up to a factor 1012 times bigger than the
corresponding probabilities for k = 1, . . . , 30 in Figure 2, where we remind that in Figure 7 the one-year
default probability (i.e. for t = 1, or, equivalently 12 months) is 0.0329 which is same as the constant
default probability p in Figure 2, that is p = 0.0329. In Section 9 we will see that a one-factor Gaussian
copula model with one-year default probability 0.0329 (same as in the CIR-case) and moderate sizes for

the correlation parameter ρ, can produce tail-probabilities P

[

N
(m)
t ≥ k

]

which are up to a factor 1065

times bigger than the corresponding probabilities in the CIR-case.
Note that the graphs in Figure 6 and the left subplot in Figure 7 are all in log-scale. However, Figure the

right panel in Figure 6 displays the time evolution of P
[

N
(m)
t ≥ k

]

in standard scale, where k = 1, ..., 18

and t = 1, . . . , 24 months when individual default times have CIR-intensities with parameters same as in
Figure 3.

Figure 8. The time evolution of the distribution P

[

N
(m)
t = k

]

for t = 1, 2, ..24 months when

individual default times have CIR-intensities as in Table 1 where m = 125. Left

panel: in log-scale for k = 0, ..., 125. Right panel: for k = 0, ..., 18. The plots in the
two panels are viewed from different angles.

Next, the left panel in Figure 8 plots, for m = 125, the time evolution of the distribution P

[

N
(m)
t = k

]

in log-scale where k = 0, ..., 125 and t = 1, 2, . . . , 24 months when individual default times have CIR-
intensities with parameters same as in Figure 3. Furthermore, the right panel in Figure 8 displays the

time evolution of the number of distribution P

[

N
(m)
t = k

]

in normal scale where k = 1, ..., 18 when

m = 125 and t = 1, . . . , 24 months when individual default times have CIR-intensities with parameters
same as in Figure 3. All the plots in Figure 6-8 are generated via Theorem 4.1 and Corollary 4.5 and in

these figures we write t in months, but the actual computations of P
[

N
(m)
t ≥ k

]

are done with t measured

in units of years. So for example two, six and 24 months mean that t is given by t = 2
12 ,

6
12 and t = 24

12 = 2

in our computations of P
[

N
(m)
t ≥ k

]

, P
[

N
(m)
t = k

]

etc.
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9. Numerical examples when the default times are driven by a one-factor Gaussian
copula model

In this section we repeat the same type of computations as in Subsection 8.2, but now in a one-
factor Gaussian copula model. We choose the individual one-year default probability to be same as in
Subsection 8.2, which is 0.0329, that is 3.29% so that we have at least one common reference value with
the CIR-case. Hence, we chose a model where the default times have conditional default distribution
p(t, Z) as given by (5.1.1) or alternatively, (10.1.1) where Z is a standard normal random variable.
Furthermore, the unconditional default distribution F (t), used in (5.1.1)-(10.1.1), is set to F (t) = 1−e−λt
with F (1) = 0.0329 implying that λ is given by λ = 0.03345, see also in Table 2. As for the correlation
parameter ρ, we set a somewhat higher value of ρ = 0.3 in order to better illustrate how it is possible to
create much higher probabilities compared to the CIR-case in Subsection 8.2.

Table 2. The parameters and related quantities for the one-factor Gaussian copula model and the
stock prices St,j where we let m = 125.

Gauss copula m = 125 ρ = 0.3 F (t) = 1− e−λt λ = 0.0335 P [τi ≤ 1] = 0.0329 = 3.29%

Once we are equipped with all the parameters describing the dynamics for the one-factor Gaussian

copula model, we proceed with computing the quantities P

[

N
(m)
t ≥ k

]

and P

[

N
(m)
t = k

]

via Corollary

5.1.
First, for m = 125, the left panel in Figure 9 displays the time evolution of the tail distribution

P

[

N
(m)
t ≥ k

]

in log-scale where k = 0, ..., 125 and t = 1, 2, . . . , 24 months when individual default times

are constructed via a one-factor Gaussian copula model where m = 125, ρ = 0.3 and F (t) = 1 − e−λt

and F (1) = 0.0329. As can be seen in the left panel of Figure 9, the tail probabilities P

[

N
(m)
t ≥ k

]

will range from 100 to 10−15. In particular, when k ≥ 120 then P

[

N
(m)
t ≥ k

]

will be of order 10−15,

which is a factor 1065 bigger than in the CIR-case presented in the left subplot of Figure 7, with the
same individual one-year default probability of 0.0329. Furthermore, the right panel in Figure 9 displays

the time evolution of P
[

N
(m)
t ≥ k

]

in standard scale, where k = 1, ..., 18 and t = 1, . . . , 24 months when

individual default times have same parameters same as in the left subplot of Figure 9. The computations
in Figure 9 are done via the saddlepoint approach given in Corollary 5.1.

Figure 9. The time evolution of the distribution P

[

N
(m)
t ≥ k

]

for t = 1, 2, . . . , 24 months in a

one-factor Gaussian copula model with parameters as in Table 2 where m = 125 and
ρ = 0.3. Left panel: in log-scale for k = 0, ..., 125. Right panel: for k = 1, ..., 18.
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Figure 10. The time evolution of the distribution P

[

N
(m)
t = k

]

for t = 1, 2, . . . , 24 months in a

one-factor Gaussian copula model with parameters as in Table 2 where m = 125 and
ρ = 0.3. Left panel: in log-scale for k = 0, ..., 125. Right panel: for k = 0, ..., 18.
The plots in the panels are viewed from different angles.

Next, the left subplot in Figure 10 displays, for m = 125, the time evolution of the distribution

P

[

N
(m)
t = k

]

in log-scale where k = 0, ..., 125 and t = 1, 2, . . . , 24 months when individual default times

have same parameters same as in Table 2 where m = 125 and ρ = 0.3. Furthermore, the right panel in

Figure 10 displays the time evolution of the number of distribution P

[

N
(m)
t = k

]

in normal scale where

k = 1, ..., 18 when m = 125 and t = 1, . . . , 24 months when individual default times have parameters same

as in the left panel of Figure 10. Note again that for larger values of k, then P

[

N
(m)
t = k

]

will be up to

a factor 1065 bigger than the corresponding probabilites in the CIR-case presented in Figure 8, with the
same individual one-year default probability of 0.0329.

All the plots in Figure 9-10 were generated via Corollary 5.1 and in these figures we write t in months,

but the actual computations of P
[

N
(m)
t ≥ k

]

are done with t measured in units of years. So for example

two, six and 24 months mean then t is given by t = 2
12 ,

6
12 and t = 24

12 = 2 in our computations of

P

[

N
(m)
t ≥ k

]

, P
[

N
(m)
t = k

]

etc.

10. Numerical studies of Value-at-Risk for a large homogeneous stock portfolio where
jumps in stocks are due to exogenous default times driven by a one-factor Gaussian

copula model

In this section we will perform some complementary numerical studies of the stock price model developed
in Herbertsson (2023a) which was briefly discussed in Section 7. Herbertsson (2023a) performs several
numerical Value-at-Risk (VaR) studies which mainly focus on the time evolution of VaR for different
equity portfolios holding the parameters fixed in the different credit risk models for the external group
of defaultable entites negatively affecting the stock prices. In this section we will do the reverse, that
is, for some few fixed time points we will study VaR in the equity portfolios as function of the ”default
correlation”-parameter ρ in the one-factor Gaussian copula model where ρ will continuously range in the
interval [0.02, 0.9]. Note that the term ”default correlation”-parameter ρ will sometimes, more correctly,
be denoted as the Gauss copula correlation parameter ρ. However, it is easy to derive a semi-explicit

expression of the true default correlation Corr
(

1{τi≤t}, 1{τj≤t}
)

which will be an explicit function of Gauss

copula correlation parameter ρ and the marginal default distribution F (t) = P [τi ≤ t] which motivates
why we sometimes write ”default correlation”-parameter ρ instead of the term ”Gauss copula correlation”
parameter ρ.
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Hence, in this section we will amongst others study Value-at-Risk for a portfolio of stocks for with jumps
in all stock prices occurring at default times of an external group of defaultable entitles C1, . . . ,Cm.
Throughout this section we assume that the default times τ1, τ2 . . . , τm to the entities C1, . . . ,Cm are
exchangeable, conditional independent and are driven by a one-factor Gaussian copula model with ”default
correlation”-parameter ρ and marginal default distribution F (t) = P [τi ≤ t].

10.1. The parameters and related quantities. In this section we assume that the default times
τ1, τ2 . . . , τm to the entities C1, . . . ,Cm are exchangeable, conditional independent and are driven by a
one-factor copula model as discussed in Subsection 3.2.1. Hence, the conditional default probability is
same for all entities C1, . . . ,Cm and given by (5.1.1), that is

P [τi ≤ t |Z] = Φ

(
Φ−1 (F (t))−√

ρZ√
1− ρ

)

(10.1.1)

where Z is standard normal random variable, ρ is the so-called default-correlation parameter, Φ(x) is dis-
tribution function to a standard normal random variable. Furthermore, F (t) = P [τi ≤ t] is the marginal
default distribution same for all entities due to the exchangeability.

The jumps Ṽ1, . . . , Ṽm in the stock prices St,j at the defaults τ1, τ2 . . . , τm are distributed as in the

numerical studies in Section 8 and Section 9, that is Ṽi = e−Ũi − 1 where Ũ1, . . . , Ũm are i.i.d and
exponentially distributed with parameter η > 0. Hence, given the above assumptions, the dynamics

of the stock price St,j is same as in Equation (7.1.1) in Definition 7.1 where N
(m)
t =

∑m
i=1 1{τi≤t} and

τ1, τ2 . . . , τm are exchangeable, conditionally independent, and come from a one-factor Gaussian model
as in (10.1.1). In our numerical examples we set F (t) = P [τi ≤ t] = 1 − e−λt and calibrate λ so that
the one-year default probability is same as in the CIR-model in Section 8, that is 0.0329 = 3.29% and
this gives λ = 0.0335, see in Table 3. Furthermore, the ”default-correlation” ρ will vary in the interval
ρ ∈ [0.02, 0.9] and we let the number of defaultable entities be m = 125, see in Table 3.

Next we turn to the parameters for the stock price model. First, note that since we use a homogeneous
stock portfolio then condition (7.2.1) is satisfies, that is the stock prices St,1, . . . , St,J satisfy S0,j =
S0, µj = µ, σj = σ and ρS,j = ρS for all firms A1, . . . ,AJ in the stock portfolio. Furthermore, we let
the parameters µ and σ be given by S0 = 50, µ = 0.15 = 15%, and σ = 0.2 = 20% and we let the stock
correlation parameter ρS be ρS = 0.25, see in Table 3. The jump parameter η is calibrated so that for
T = 1 year we have

E [ST,j] = S0 or equivalently E





(
η

η + 1

)N
(m)
T



 = e−µT for T = 1 (10.1.2)

see also Equation (7.1.6) which together with E [ST,j] = S0 implies that E

[
(

η
η+1

)N
(m)
T

]

= e−µT . Hence,

(10.1.2) implies that for each Gauss copula correlation ρ, the jump-parameter η is calibrated so that
the defaults from the one-factor Gaussian copula model with ”default correlation” ρ, ”wipes” out the
expected one-year log-growth for a corresponding Black-Scholes model with drift µ = 15% and where
m = 125. The calibration condition (10.1.2) implies that the jump-parameter η will be a function of the
parameters µ, σ, ρS , S0 and the default correlation parameter ρ. However, in this paper µ, σ, ρS , S0 will all
be fixed and given by Table 3, and only the default correlation parameter ρ will vary so that η = η (ρ).
With µ, σ, ρS , S0 and λ fixed as in Table 3 with m = 125, and where the one-factor Gaussian copula
parameter ranges in ρ ∈ [0.02, 0.9] then condition (10.1.2) implies that η = η (ρ) will range in the interval
η ∈ [0.1651, 26.22] and the expected value E [Un,j] of the jumps Un,j in the log of stock prices as function
of Gauss copula correlation ρ will range in the interval E [Un,j] =

1
η ∈ [0.03813, 6.058], see also in Figure

16 which displays η = η (ρ) and E [Un,j] =
1

η(ρ) as function of ρ. The middle panel in Figure 16 displays

E [Un,j] =
1

η(ρ) for ρ ∈ [0.02, 0.9] and and the right panel in Figure 16 displays E [Un,j] for ρ ∈ [0.02, 0.8].

Table 3. The parameters and related quantities for the one-factor Gaussian copula model and the
stock prices St,j where we let m = 125.

Gauss copula ρ ∈ [0.02, 0.9] F (t) = 1− e−λt λ = 0.0335 P [τi ≤ 1] = 0.0329 = 3.29%

St,j S0,j = 50 µ = 0.15 σ = 0.2 ρS = 0.25 η ∈ [0.1651, 26.22] E [Un,j] =
1
η
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10.2. VaR for fixed time periods for a large homogeneous stock portfolio where jumps in

stocks are due to default times driven by a one-factor Gaussian copula model. In this sub-
section we study Value-at-Risk (VaR) for an equally value weighted homogeneous portfolio of J = 150
stocks issued by the J firms A1, . . . ,AJ with stock prices St,1, St,2, . . . , St,J that have jumps occurring at
default times τ1, τ2 . . . , τm which are exchangeable, conditional independent and are driven by a one-factor
Gaussian copula model as discussed in Subsection 10.1 and with parameters as in Table 3. In particular,
we study VaR for the above stock portfolio as function of the one-factor Gaussian copula parameter ρ
for the external group of defaultable entitles C1, . . . ,Cm with default times τ1, τ2 . . . , τm which negatively
affects the stock prices St,1, St,2, . . . , St,J . For each default correlation ρ, the distribution of the jumps
in the stock prices will have the same jump-parameter η determined by the condition (10.1.2). We here
remark that it is of course also possible to fix the jump-parameter η to be the same value for all default
correlation parameters ρ. However, this will imply different expected values E [ST,j] of the stock prices for
different ρ-values and it will then be difficult to realistically compare VaR-values for the stock portfolio
losses across different default correlation parameters ρ. In this paper we choose to make the stock portfolio
VaR-losses to be done under somewhat economically sound and interpretable conditions. We believe that
the condition (10.1.2), that is E [ST,j] = S0 where T = 1 year, for all default correlation parameters ρ, is
an economically equal and interpretable condition which makes it intuitive clear that the expected value
of the loss will stay the same at T = 1 year, thus implying that the jump parameter η must change as
the default correlation parameters ρ increases. Of course, condition (10.1.2) can be replaced with another
condition, for example having the same constant jump-parameter η, but this will then imply different
values of E [ST,j] for different default correlation parameters ρ.

Since our equity portfolio is large and homogeneous, we will in our stock portfolio VaR computations
use the LPA approximation formulas in Theorem 7.8. Figures 11 - 12 displays Value-at-Risk in % of
V0 as function of the one-factor Gaussian copula parameter ρ ∈ [0.02, 0.55] four different time points
t = 5, 10, 20, 40 days and the three different confidence levels α = 95%, 99% and α = 99.9%. In Figures
11 - 12 we put an upper restriction of ρ at 0.55 but in Figure 15 this is relaxed to so that ρ ∈ [0.02, 0.90].
In the end of this section we will discuss in more detail why ρ ≤ 0.55 in Figures 11 - 12.

The left panel in Figure 11 displays Value-at-Risk (in % of V0) for α = 95%, 99% and α = 99.9% at
t = 5 days as function of Gauss copula correlation ρ where VaR is computed with the LPA-formula in
Theorem 7.8 for a homogeneous portfolio with J = 150 stocks which has jumps in all stock prices at
default times driven by a one-factor Gaussian copula model with m = 125 and parameters as in Table 3.
For each ρ condition (10.1.2) holds, that is E[ST,j] = S0 for T = 1 year. The right panel in Figure 11
displays same quantities as in left panel, but now for t = 10 days. Similarly, the two panels in Figure 12
displays the same type of VaR values as in Figures 11 but now for t = 20 days (left panel in Figure 12)
and t = 40 days (right panel in Figure 12).

The interpretation of all the curves in Figure 11 - 12 are done in the same way. For example, in the
left panel of Figure 11, looking at the red line (99.9%-VaR) and when the one-factor Gaussian correlation
is ρ = 0.5 = 50%, we see that after 5 days, then there is a 0.1% probability of having a loss in the stock
portfolio which is 44.77% or bigger, of the initial portfolio value V0 at time t = 0. Similarly, from the
black-dotted line (99%-VaR) and when the one-factor Gaussian correlation is ρ = 0.5 = 50%, we see that
after 5 days, then there is a 1% probability of having a loss in the stock portfolio which is 10.69% or
bigger, of the initial portfolio value V0 at time t = 0. Furthermore, moving to VaR for t = 40 days (i.e.
two trading months) displayed in the right panel of Figure 11 with ρ = 0.5 = 50%, looking at the red
line (99.9%-VaR) we see that after 40 days, then there is a 0.1% probability of having a loss in the stock
portfolio which is 90% or bigger, of the initial portfolio value V0 at time t = 0.

In order to benchmark our VaR-results in Figures 11 - 12 we also compare our results with the corre-
sponding VaR-values in the Black-Scholes case with same drift and volatilises as in the stock price model
with jump at defaults. Thus, Table 4 displays Value-at-Risk in % of V0 at four different time points
t = 5, 10, 20, 40 days and the three different confidence levels α = 95%, 99% and α = 99.9%, computed
with the Black-Scholes LPA-formula in Equation (7.2.12) with parameters as in Table 3. As can be seen
in Table 4 and comparing with the VaR-levels in Figure 11 - 12, the differences between the jump vs
non-jump VaR-cases are huge, sometimes several hundred times bigger for larger ρ-values.
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Figure 11. Value-at-Risk (in % of V0) at fixed time point t = 5 and t = 10 days as function of
Gauss copula correlation ρ where VaR is computed with the LPA-formula in Theorem
7.8 for a homogeneous portfolio with J = 150 stocks which has jumps in all stock
prices at default times driven by a one-factor Gaussian copula model with m = 125
and parameters as in Table 3. For each ρ condition (10.1.2) holds, that is E[ST,j ] = S0

for T = 1 year. Left panel: VaR for t = 5 days. Right panel: VaR for t = 10 days.
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Figure 12. Value-at-Risk (in % of V0) at fixed time point t = 20 and t = 40 days as function of
Gauss copula correlation ρ where VaR is computed with the LPA-formula in Theorem
7.8 for a homogeneous portfolio with J = 150 stocks which has jumps in all stock
prices at default times driven by a one-factor Gaussian copula model with m = 125
and parameters as in Table 3. For each ρ condition (10.1.2) holds, that is E[ST,j ] = S0

for T = 1 year. Left panel: VaR for t = 20 days. Right panel: VaR for t = 40
days.

For example, in Table 4 we see that at t = 10 days the Black-Scholes 99.9%-VaR LPA-formula is
2.457% of the initial stock portfolio value V0 at time t = 0 while in the stock price model with jumps,
at t = 10 days and with default correlation ρ = 0.55 (see right panel in Figure 11), then the 99.9%-VaR
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LPA-formula (computed via Theorem 7.8) is 68.73% of the initial stock portfolio value V0 at time t = 0.
Thus, the relative difference between the Black-Scholes VaR and VaR with jumps is then over 2697% if we
measure the relative difference with respect to the Black-Scholes case (100× 68.73−2.457

2.457 = 2697). We also
remind that a negative loss is a gain implying that the Black-Scholes case we see that in the Black-Scholes
LPA portfolio model it is extremely difficult to obtain losses over a two-month period (40 days), as seen
in Table 4.

Table 4. Value-at-Risk (in % of V0) for t = 5.10, 20, 40 days of a homogeneous portfolio with
J = 150 stocks in the Black-Scholes case computed with the LPA-formula in Equation
(7.2.12) and with drift, volatility and stock correlation as in Table 3.

t (in days) 5 10 20 40

Black-Scholes VaR95%

(

L
(V )
t

)

(in % of V0) 0.8596 1.0426 1.1299 -6.3331

Black-Scholes VaR99%

(

L
(V )
t

)

(in % of V0) 1.3343 1.7120 2.0745 -2.8553

Black-Scholes VaR99.9%

(

L
(V )
t

)

(in % of V0) 1.8637 2.4570 3.1225 0.9080

In the left panels of Figures 11 - 12 we see that the 95%-VaR is not monotonically increasing in the
”default correlation”-parameter ρ. The non-monotonic VaR in ρ is even more clear in the left (first) panel
of Figure 13.

To investigate this further, we plot in the left panel of Figure 14, the stock-portfolio 95%-VaR (in % of
V0) as function of Gauss copula correlation ρ ∈ [0.02, 0.9] at the time points t = 10, 20, 40 days and where
VaR is computed with the LPA-formula in Theorem 7.8 for a homogeneous portfolio with J = 150 stocks
which has jumps in all stock prices at default times driven by a one-factor Gaussian copula model with
m = 125 and parameters as in Table 3.
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Figure 13. Value-at-Risk (in % of V0) at fixed confidence level α = 95%, 99% and α = 99.9% as
function of Gauss copula correlation ρ for t = 5, 10, 20, 40 days where VaR is computed
with the LPA-formula in Theorem 7.8 for a homogeneous portfolio with J = 150 stocks
which has jumps in all stock prices at default times driven by a one-factor Gaussian
copula model with m = 125 and parameters as in Table 3. For each ρ condition
(10.1.2) holds, that is E[ST,j ] = S0 for T = 1 year. Left panel: VaR for α = 95%.
Middle panel: VaR for α = 99%. Right panel: VaR for α = 99.9%.

From left panel of Figure 14 it is clear that the stock-portfolio 95%-VaR is not only non-monotonic,
it can also has multiply local maxima depending on the time point t. The are two main reason for
the fluctuating stock-portfolio 95%-VaR. The first reason is that the LPA stock portfolio loss distri-
bution F LPA

L
(V )
t

(x) defined in Equation (7.2.7), is a weighted sum consisting of m + 1 terms where for

each term, indexed by k = 0, 1, . . . ,m, is a product of P
[

N
(m)
t = k

]

and a probability Φk(x, t, η, . . .) =

1−Φ




ln

(

(

1− x
JS0

)(

η+1
η

)k
)

−(µ− 1
2
σ2ρ2S)t

σρS
√
t



, see also in (7.2.7). Now, in the one-factor Gaussian copula model
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and under the calibration condition 10.1.2, both sequences
(

P

[

N
(m)
t = k

])m

k=0
and (Φk(x, t, η, . . .))

m
k=0

will be functions of the default correlation parameter ρ since η = η(ρ) in view of 10.1.2. As ρ increases

the weights
(

P

[

N
(m)
t = k

])m

k=0
will change for changing ρ and in particular, will create a more and more

U-shaped form as function of k for fixed t as ρ increases and the U-shape will also be more pronounced as

time t increases, see e.g in Figure 18 and Figure 19. These observations for the ”weights” P

[

N
(m)
t = k

]

will then imply that the for a fixed x, the mapping F LPA

L
(V )
t

(x) = F LPA

L
(V )
t

(x; ρ) viewed as a mapping of ρ, will

not be monotonic in ρ and consequently, also the inverse (F−1)LPA
L
(V )
t

(α; ρ) for fixed α and fixed t, seen as a

function of ρ, will not necessarily be monotonic in ρ, as is clearly seen in the left panel of Figure 14. The
second reason for the fluctuating stock-portfolio 95%-VaR and in particular the decreasing 95%-VaR for
higher ρ-values, in particular as ρ approaches 90% is due to the fact that the 95%-VaR for the number

of defaults N
(m)
t is a also non-monotonic in ρ, and the 95%-VaR for N

(m)
t will be zero for higher ρ-values

when t = 10, 20, 40 days, as is clearly seen in the right panel of Figure 14. Furthermore, also the 99%-VaR

for the number of defaults N
(m)
t is non-monotonic in ρ as seen in the left subplot of Figure 15. However,

for the 99.9%-VaR for N
(m)
t will be strictly increasing in ρ when t = 10, 20, 40 days, which is seen in the

right panel of Figure 15.
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Figure 14. Left panel: Value-at-Risk (in % of V0) at α = 95% as function of Gauss copula
correlation ρ for t = 10, 20, 40 days where VaR is 7.8 for a homogeneous portfolio
with J = 150 stocks which has jumps in all stock prices at default times driven by a
one-factor Gaussian copula model with m = 125 and parameters as in Table 3. For
each ρ condition (10.1.2) holds, that is E[ST,j ] = S0 for T = 1 year. Right panel:

Value-at-Risk at α = 95% for N
(m)
t as function of Gauss copula correlation ρ for

t = 5, 10, 20 and with parameters as in Table 3 where m = 125.

The motivation for zero 95%-VaR for the number of defaultsN
(m)
t at very high ρ-values for t = 10, 20, 40,

as seen in the right panel of Figure 14, is due to the fact that individual default probabilities at these time

points are small, and the very large ρ-value will make P

[

N
(m)
t = 0

]

> 95%. For example, at t = 10 days

and ρ = 0.8 then P

[

N
(m)
t = 0

]

= 97.82%, and at t = 20 days and ρ = 0.8 then P

[

N
(m)
t = 0

]

= 96.26%

and at t = 40 days and ρ = 0.87 then P

[

N
(m)
t = 0

]

= 95.69% and all these observations implies that

95%-VaR will be zero at these time points and ρ-values.
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Figure 15. Value-at-Risk for N
(m)
t at fixed confidence level α as function of Gauss copula cor-

relation ρ for t = 10, 20, 40 days and with parameters as in Table 2 where m = 125.
Left panel: VaR for α = 99%. Right panel: VaR for α = 99.9%.
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Figure 16. Left panel: Calibrated η so that E[ST,j ] = S0 for T = 1 year as function of Gauss
copula correlation ρ where the stock price St,j jumps at default times driven by a one-
factor Gaussian copula model with m = 125 and parameters as in Table 3. Middle

panel: Expected value E[Un] =
1
η
of jumps Un in log of stock prices as function of

Gauss copula correlation ρ where the stock price St,j jumps at default times driven by
a one-factor Gaussian copula model with m = 125 and parameters as in Table 3 and
where η for each ρ is given by the left panel. Right panel: Same as middle panel
but where ρ runs up to ρ = 0.8.

The reason for letting ρ ≤ 0.55 in Figures 11 - 12 is that VaR-equation for α = 99% and 99.9% will
already for ρ around 0.60 reach the maximum loss of V0, which due to the LPA-VaR formula (7.2.9) will in
the solution of the nonlinear equation (F−1)LPA

L
(V )
t

(α) produce numerical instabilities since the distribution

to the LPA approximation of the stock portfolio loss F LPA

L
(V )
t

(x) will be close to its maximum valule of

V0 = JS0 when ρ grows and when α = 99% and 99.9%. It is possible to overcome this problem simply
by manually solve the equation F LPA

L
(V )
t

(x) = α using e.g. a while loop but this is a very time consuming
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procedure which also leads to a non-smooth curve of VaR for larger ρ. However, for lower confidence levels
such as e.g. α = 95% the numerical solution to F LPA

L
(V )
t

(x) = α, that is the value (F−1)LPA
L
(V )
t

(α) is obtained

non-problematic also for higher values of ρ, as can be seen in the left panel of Figure 14 which shows the
95%-VaR for ρ ∈ [0.02, 0.90] in steps of 0.01 at four different time points t = 5, 10, 20, 40. Similarly, the
right panel in Figure 14 shows the 99%-VaR for t = 5, 10, 20, 40 days, with same parameters as in the left
and middle panels of Figure 14.

Figure 17. The distribution P

[

N
(m)
t = k

]

in log-scale for k = 0, ..., 125 as function of Gauss

copula correlation ρ ∈ [0.02, 0.9] with parameters as in Table 3 where m = 125. Left
panel: For t = 5 days. Right panel: For t = 40 days.

Figure 18. The distribution P

[

N
(m)
t = k

]

in log-scale for k = 0, ..., 125 as function of Gauss

copula correlation ρ ∈ [0.6, 0.9] with parameters as in Table 3 where m = 125. Left

panel: For t = 5 days. Right panel: For t = 10 days.
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Figure 19. The distribution P

[

N
(m)
t = k

]

in log-scale for k = 0, ..., 125 as function of Gauss

copula correlation ρ ∈ [0.6, 0.9] with parameters as in Table 3 where m = 125. Left

panel: For t = 20 days. Right panel: For t = 40 days.

We finally remark that all computations done in all figures from Figure 11 to Figure 16 would be
very difficult to efficiently and in rather limited time be done without having the efficient saddlepoint

algorithms for computing the probabilities P

[

N
(m)
t = k

]

as function of ρ and k, which are displayed in

Figure 17 - Figure 19 for various time points t and different regions for the ”default correlation” parameter
ρ, which we sometimes also denote by the Gauss copula correlation parameter ρ.

11. Comparing the saddlepoint method with other numerical methods

In this section we compare the method of computing P

[

N
(m)
t = k

]

via the saddlepoint approach with

another numerical method, briefly discussed in Subsection 3.2.1. For simplicity, we will only focus on the
one-factor Gaussian copula model, mainly since the factor will be unchanged by the parameters so it is
easy and quick to change the parameters and redo computations (while in e.g. the CIR-case a new Fourier
inversion has to be done to find the time-dependent factor-density for each new parameter setting).

The alternative method for computing P

[

N
(m)
t = k

]

presented in this section is purely numeric and

lacks the analytical formulas obtained in the saddlepoint approach. Below we present the alternative

method for computing P

[

N
(m)
t = k

]

. Recall from Equation (3.2.11), now adapted to a factor model with

conditional default probability p(t, Z), that

P

[

N
(m)
t = k

]

= E

[(
m

k

)

p(t, Z)k (1− p(t, Z))m−k
]

=

∫ ∞

−∞

(
m

k

)

p(t, z)k (1− p(t, z))m−k fZ(z) dz (11.1)

where p(t, Z) for example is given by (10.1.1) or (5.2.1.2) and fZ(z) is the density to the random factor Z
driving the conditional default probability p(t, Z). As discussed in Subsection 3.2.1, a direct computation
of the integral in the right hand side of (11.1) will for say, m ≥ 55 in practice not work since the binomial
coefficient will be to large to be stored with exact accuarcy on a standard computer, using standard
math software such as e.g. Matlab, R or Python. But numerically, one can in most software packages
circumvent the problem discussed in connection with Equation (11.1) by e.g. use built-in functions for
the probability distribution of a binomial distribution applied to the ”fixed” probability p(t, z) and then
repeat this for every z in the numerical quadrature of the integral in the right hand side of (11.1). For

example, in matlab the quantity
(m
k

)
p(t, z)k (1− p(t, z))m−k can be computed via the built-in numerical

functions such as e.g. binopdf, with the binomial parameters m and p(t, z) and the integer k and then use
this in a numerical approximation of the integral in (11.1). Hence, if we consider a mesh z1 < z2 < . . . zJC
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on a limited interval of the range of Z, which in our case will be the real line R, we can then approximate
the integral (11.1) as follows,

∫ ∞

−∞

(
m

k

)

p(t, z)k (1− p(t, z))m−k fZ(z) dz ≈
JC∑

n=1

(
m

k

)

p(t, zn)
k (1− p(t, zn))

m−k fZ(zn)∆zn

=

JC∑

n=1

binopdf(k,m, p(t, zn))
︸ ︷︷ ︸

=(mk )p(t,zn)k(1−p(t,zn))
m−k

fZ(zn)∆zn

(11.2)

which together with (11.1) implies that

P

[

N
(m)
t = k

]

≈
JC∑

n=1

binopdf(k,m, p(t, zn))
︸ ︷︷ ︸

=(mk )p(t,zn)k(1−p(t,zn))
m−k

fZ(zn)∆zn . (11.3)

We will now use the approximation (11.3) as a benchmark to the saddlepoint formula for P

[

N
(m)
t = k

]

derived in this paper. Since we in this section only consider a one-factor Gaussian factor model then
fZ(z) will be the density to a standard normal random variable and we will thus compare the numerical
benchmark method in (11.3) with the saddlepoint Equation (5.3.6), that is

P

[

N
(m)
t = k

]

≈
∫ ∞

−∞
∆H

(LR)
B (k,m, p(t, z))

1√
2π
e−

z2

2 dz ≈
JC∑

n=1

∆H
(LR)
B (k,m, p(t, zn))

1√
2π
e−

z2n
2 ∆zn

(11.4)

where the mappings H
(LR)
B (x,m, p) and ∆H

(LR)
B (k,m, p) in (11.4) are defined as in Corollary 5.1. Note

that the first approximation in (11.4) is obtained by dropping the error-term O(m−3/2) in (5.3.6). We

also observe that (11.4) can be obtained by applying the approximation (5.3.5) for P

[

N̄
(m)
t ≥ x

]

with

x = k
m and x = k+1

m and then take the difference of these two-tail probabilities, and finally dropping the

error-term O(m−3/2) in (5.3.5). Furthermore, the mesh in (11.4) should be approximately the same as in
(11.3). In practice, when computing the numerical integrals both in (11.3) and (11.4) we use the built-in
matlab-function integral over roughly the same interval, which thus takes care of the creating of the

mesh. Furthermore, since the density fZ(z) =
1√
2π
e−

z2

2 will have very thin tails, we don’t have to consider

a very large mesh on R for the integrals in (11.3) and (11.4) since fZ(z) =
1√
2π
e−

z2

2 will be extremely small

outside e.g. the interval [−20, 20]. Regarding the numerical routine binopdf in matlab, the help function
in Matlab does not specify which type of method that is used in binopdf. However, in Loader (2002), the
authors claims that binopdf is based on a log-transform method of the exact expression together with the
fact that ln(m!) can be computed via the Gamma function and applying ln(·) on this expression, see p.2
in Loader (2002). Regarding the case k = m, we remind that the saddlepoint approach in this paper will

give an exact expression for P

[

N
(m)
t = m

∣
∣
∣Z
]

since P

[

N
(m)
t = m

∣
∣
∣Z
]

= p(t, Z)m, and this will in turn

completely remove the error term O(m−3/2), when computing P

[

N
(m)
t = m

]

via the integral in (11.4).

Hence, the first approximation in (11.4) will turn into an equality when k = m, and since we use the same
type of discretization of the integral in (11.4) and the binopdf-method (11.3), then, at least in theory,
we should for k = m, have zero difference between the two methods (11.3) and (11.4).

Next, Figure 21 - 23 displays some computations of P
[

N
(m)
t = k

]

via the saddle point method in (11.4)

and the binopdf-method in (11.3) and their relative errors, in a one-factor Gaussian copula model for
different parameters.

First, Figure 20 displays the case m = 30, t = 4 months, i.e. t = 4
12 , in a one-factor Gaussian copula

model where ρ = 0.3 and F (t) = 1 − e−λt with F (1) = 0.0329. The left panel of Figure 20 displays

P

[

N
(m)
t = k

]

both via the saddlepoint approach (via Equation (11.4)) and Matlabs built in method

binopdf (via Equation (11.3)) where k = 0, ...,m with m = 30 while the left panel of Figure 20 shows the
relative difference (in percent) between the two methods where the relative difference is measured with
respect to the binopdf-method. As can be in the left panel of Figure 20 the errors for k = 0, ..., 28 and
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k = 30 are all under 1.89% while for k = 29 the error is 8.49% where P

[

N
(30)
t = 29

]

= 1.2336 × 10−9 in

the binopdf-case.
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Figure 20. Left panel: Computation of P
[

N
(m)
t = k

]

both via the saddlepoint approach and

Matlabs built in method binopdf where k = 0, ...,m with m = 30 and t = 4 months,
i.e. t = 4

12 , in a one-factor Gaussian copula model where ρ = 0.3 and F (t) = 1− e−λt

with F (1) = 0.0329 (same parameters as in Table 2). Right panel: Relative error
(in percent) between the two methods in the left panel where the relative difference is
measured with respect to the binopdf-method.
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Figure 21. Left panel: Computation of P
[

N
(m)
t = k

]

both via the saddlepoint approach and

Matlabs built in method binopdf where k = 0, ...,m with m = 125 and t = 4 months,
i.e. t = 4

12 , in a one-factor Gaussian copula model where ρ = 0.6 and F (t) = 1− e−λt

with F (1) = 0.0265. Right panel: Relative error (in percent) between the two
methods in the left panel where the relative difference is measured with respect to the
binopdf-method.
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In Figure 21 we repeat the same procedure as in Figure 20, but now for t = 4 months, i.e. t = 4
12 , in

a one-factor Gaussian copula model where ρ = 0.6 and F (t) = 1− e−λt with F (1) = 0.0265. In the right
panel of Figure 21 we see that the errors for k = 0, ..., 122 and k = 125 are all under 0.9454% while for

k = 123 the error is 8.425% where P

[

N
(125)
t = 125

]

= 5.9830 × 10−7 in the binopdf-case.
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Figure 22. Left panel: Computation of P
[

N
(m)
t = k

]

both via the saddlepoint approach and

Matlabs built in method binopdf where k = 0, ...,m with m = 125 and t = 4 months,
i.e. t = 4

12 , in a one-factor Gaussian copula model where ρ = 0.3 and F (t) = 1− e−λt

with F (1) = 0.0329 (same parameters as in Table 2). Right panel: Relative error
(in percent) between the two methods in the left panel where the relative difference is
measured with respect to the binopdf-method.
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Figure 23. Left panel: Computation of P
[

N
(m)
t = k

]

both via the saddlepoint approach and

Matlabs built in method binopdf where k = 0, ...,m with m = 70 and t = 2 months,
i.e. t = 2

12 , in a one-factor Gaussian copula model where ρ = 0.25 and F (t) = 1−e−λt

with F (1) = 0.02. Right panel: Relative difference (in percent) between the two
methods in the left panel where the relative difference is measured with respect to the
binopdf-method.
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Hence, in the cases shown both in Figure 20 and Figure 21 the saddlepoint approach gives an extremely
good fit for all k, except for the second last points k = m − 1 both for m = 30 and m = 125, where
the errors still are acceptable size (around 8.4%) and the probabilities are quite small at the points
k = m − 1. We also remind that the saddlepoint method gives an upper bound of the error which is of
order O(m−3/2), see e.g. in Corollary (5.1) and Remark 5.2, but as can be seen in the left panels in Figure

20-21, most probabilities P
[

N
(m)
t = k

]

are much lower than the value m−3/2, and when comparing with

the binopdf-approach the accuracy for the saddlepoint method for these cases are therefore much sharper
than m−3/2.

The results in Figure 20 - 21 are two examples where the alternative method via the binopdf-approach
(11.3) actually works. However, in most of our numerical studies, the binopdf-approach will fail for some
or many k-values. More specfic, we have found that, at least in the one-factor Gaussian copula model, it
is more common that binopdf-approach in (11.3) will fail for various parameter settings, while the saddle
point method in (11.4) seems to be remarkable robust. To see this, we repeat similar studies as Figure
20-21, but for other parameters not deviating too much from these in Figure 20-21. First, Figure 22
displays the case for t = 4 months, i.e. t = 4

12 , in a one-factor Gaussian copula model where ρ = 0.3 and

F (t) = 1−e−λt with F (1) = 0.0329 and m = 125, which are the same parameters as in the Figures ??-??.
From the left panel in Figure 22, we see that the saddlepoint method produces a smooth curve for the
probabilities, very similar to those in in Figure 20 - 21. However, the binopdf-method in Figure 22 gives
a very irregular, and strange behaviour, for some k-values. Furthermore, from the right panel in Figure
22 we see that the relative error is very small (less than 0.6%) for k = 0, . . . , 101 and k = 105, . . . , 110
but for k = 102, . . . , 104 and k > 116 the error jump up to several thousand percent, for example at
k = 102 the error is 6549% and at m = 125 the error is 2200%. To this end, we also remind that the
saddlepoint method will produce an exact computation at k = m, with zero error compared with the
analytical binomial formula, implying that it is evident that the binopdf-approach fails substantially, at
least for k = 125 in this case. Furthermore, the very strange irregularities seen in the left panel of Figure
22 for k = 102, . . . , 104 in the binopdf-method, strongly indicates that the binopdf-method is not a stable
numerical method, at least not in the one-factor Gaussian copula case. We have not been able to find out
what goes wrong in the matlab binopdf-method for these values (and this is obviously not the purpose
of our study), but they are clearly wrong, as can be seen in Figure 22. We also remind that Matlab does

not provide a documentation of what method it uses in the routine ”binopdf” to compute P

[

N
(m)
t = k

]

for larger values of m and k.
To show that failure of binopdf-method in Figure 22 is not isolated to one particular case, we redo

the computations also for another case, where m = 70 and t = 2 months, i.e. t = 2
12 , in a one-factor

Gaussian copula model where ρ = 0.25 and F (t) = 1− e−λt with F (1) = 0.02, and display the results in
Figure 23. Note that the irregularities/failures by the matlab binopdf-method are in these case even more
pronounced. For example, as seen in the right panel of Figure 23, the relative error is very small (less
than 1.31%) for k = 0, . . . , 39 and also small errors for k = 41, . . . , 50 (less than 4.11%)), but for k = 40
we suddenly have a dramatic jump of the error to more than 637% which clearly is due to some flaw of the
binopdf-approach, as can be seen in the left panel of Figure 23, since it is rather smooth for all k-values
in a neighborhood of k = 40. Also note the very strange deviation of the binopdf-method for k ≥ 53 with
an error of over 6485% at k = 64. Finally, for k = 70 the error is 24.75% while it should be zero if binopdf

works properly, since at k = m the saddlepoint gives an exact expression for P
[

N
(m)
t = m

]

, as mentioned

above, showing once again that binopdf fails to work for mixed binomial models, as in (11.2)-(11.3).
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