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Abstract. In this paper, we study equity risk management of stock portfo-

lios where the individual stock prices have downward jumps at the defaults of
an exogenous group of defaultable entities. The default times can come from

any type of credit portfolio model. In this setting, we derive computational
tractable formulas for several stock-related quantizes, such as loss distributions

of equity portfolios, and apply it to Value-at-Risk computations. In the portfo-

lio case, our study considers both small-time expansions of the loss-distribution
for a heterogeneous portfolio via a linearization of the loss, but also for general

time points when the stock portfolio is large and homogeneous and where we

use a conditional version of the law of large numbers. Most of the derived
formulas will heavily rely on the ability to efficiently compute the number

of defaults distribution of the entities in the exogenous group of corporates

negatively affecting the stock prices in our equity portfolio. We give several
numerical applications. For example, in a setting where the jumps in the stock

prices are at default times which are generated by a one-factor Gaussian cop-

ula model, we study the time evolution of Value-at-Risk (i.e. VaR as function
of time) for stock portfolios, both for a 20-day period and for a two-year pe-

riod. We also perform similar numerical VaR-studies in a setting where the
individual default intensities follow a CIR process. Our results are compared

with the corresponding VaR-values in both the Black-Scholes case and Kou

model with the same drift and volatility as in the jump-at-default models. Un-
surprisingly, we show that the VaR-values in stock portfolios with downward

jumps at defaults of external entities will have substantially higher VaR-values
compared to the corresponding Black-Scholes cases, but also compared with
VaR-numbers from the Kou model restricted to having only negative jumps.

1. Introduction. Simultaneous downward jumps in multiple stock prices at de-
faults of large companies is a very realistic feature. For example, at the default of
Lehmann Brothers on September 15th, 2008, there was a 4.5% drop in the Dow-
Jones Industrial Average index during the trading day, while the S&P 500 jumped
down nearly 5% the same day, see e.g. in [31]. Other more recent examples are the

2020 Mathematics Subject Classification. G33, G13, C02, C63, G32.
Key words and phrases. Equity portfolio risk, stock price modelling, credit portfolio risk, risk

management, Value-at-Risk, intensity-based models, credit copula models, numerical methods.
The research was supported by Nasdaq Nordic Foundation, Vinnova, and Jan Wallanders och

Tom Hedelius stiftelse.

We are grateful for the comments received from two anonymous reviewers and comments from
participants at the 11th General AMaMeF conference 2023.

∗Corresponding author: Alexander Herbertsson.

1

http://dx.doi.org/10.3934/fmf.2024019
mailto:alexander.herbertsson@cff.gu.se


2 ALEXANDER HERBERTSSON

collapse of Silicon Valley Bank in March 2023 which caused a 6.6% and a 3.8% one-
day declines in the S&P 500 banking index and Europe’s STOXX banking index
respectively, see [46].

In this paper, we study equity risk management of stock portfolios where the
individual stock prices have simultaneous downward jumps at the defaults of an
exogenous group of defaultable entities, for example corporate or sovereign states.
By “exogenous”, here we mean that the entities, for example companies, will not be
represented in the stock portfolio, that is stocks issued by the defaultable corporates
are not present in the stock portfolio in our studies. The default times can come
from any type of credit portfolio model. In this setting, we derive computational
tractable formulas to several stock-related quantizes, for example the loss distribu-
tions of equity portfolios, and apply it to risk management computations, such as
Value-at-Risk of portfolios. We start with modeling an individual stock price and
derive expressions for the expected value, conditional expected value, density, and
distribution for the stock. In the stock portfolio case, our study considers both
small-time expansions of the loss-distribution to a heterogeneous portfolio via a lin-
earization of the loss, but also for general time points when the stock portfolio is
large and homogeneous, where we utilize a conditional version of the law of large
numbers for a homogeneous stock portfolio. Most of the formulas in this paper will
heavily rely on the ability to efficiently compute the number of defaults distribution
of the entities in the exogenous group which are negatively affecting the stock prices
in our equity portfolio. In the case when the stock prices are unaffected by the ex-
ogenous defaults, our stock price model collapses into the traditional Black-Scholes
model under the real probability measure. Finally, we give several numerical appli-
cations. For example, in a setting where the jumps in the stock prices are at default
times which are generated by a one-factor Gaussian copula model, we study the time
evolution of Value-at-Risk (i.e. VaR as function of time) for stock portfolios, both
for a 20-day period with one-day steps and for a two-year period with one-month
steps. In the 20-day period we use the linear approximation for the loss-process,
while for the two-year period we utilize a large portfolio approximation formula for
the loss-process to a large homogeneous stock portfolio. We also perform similar
studies when the default times are generated by a Clayton copula model. Further-
more, in a setting where the jumps in the stock price are at default times which
have CIR-intensities, we also study the time evolution of Value-at-Risk for one stock
over a two-year period. In all our numerical computations, we compare our results
with the corresponding VaR-values in the Black-Scholes case with the same drift
and volatility as in the jump models and in some cases also with the [32] model
restricted to only having negative jumps with suitable chosen jump parameters to
make the comparison fair. Unsurprisingly, we show that the VaR-values in stock
portfolios with stock that jump downward at defaults of external companies will
have substantially higher VaR-values compared to the corresponding Black-Scholes
cases, and also much higher than those VaR-metricis coming from the [32] model
with only negative jumps. The numerical computations of the number of default
distributions will in all our VaR-studies use fast and efficient saddlepoint methods
developed in [25].

There exists a huge amount of academic papers that model stock prices with
jumps, and a vast majority of these articles which contains numerical/practical
examples consider the case where jump times are driven by some sort of Poisson
process. Furthermore, most of the jump-related equity papers model the stock price
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directly under the risk neutral probability measure and then apply the model for
option pricing, such as, e.g., the original paper by [41]. An example of an article
that actually models the stock price under the real (physical) probability measure
is the seminal paper [32], where the stock price jump either up or down at random
times driven by a Poisson process with constant intensity. [32] mainly studied option
pricing directly under the real probability measure by using asset pricing theory,
consumption utilization, and the Euler equation, where both the endowment process
and the stock price follows the type of jump diffusion as defined in [32]. More about
option pricing models for stocks with jumps driven by Poisson processes (such as
Levy processes) can be found in, e.g., the books [48] or [12].

In this paper, all jumps in the stock prices are downward jumps occurring at the
defaults in an exogenous group of defaultable entities. Hence, in this paper we have
explicitly inserted “external” credit risk (from the external group of defaultable
entities) into the equity dynamics or our stock price, effectively creating a type of
hybrid risk model. Thus, the stock price model in this paper involves both equity
and credit risk, although the credit risk comes from an external group of defaultable
entities which can be corporate or sovereign states. Furthermore, we work under
the real (physical) probability measure and focus on risk management, such as VaR
computations of stock portfolios. To the best of our knowledge, this is the first
paper that numerically computes VaR and related risk management quantities for
stock portfolios where all the stock prices have simultaneous jumps at defaults in
an external group of arbitrarily many defaultable entities.

Assuming only negative jumps in the stock prices will lead to a more conser-
vative or prudent equity portfolio model which implies larger Value-at-Risk losses
compared to a model which also includes positive jumps. Including only nega-
tive jumps in stock prices for, e.g., VaR-models should therefore be more favorable
among financial regulators (such as e.g. SEC, FCA, BaFin etc.) compared with
frameworks that also contain positive jumps in equity prices. In our model, it is
possible to add another jump process in the dynamics of the stock price, for ex-
ample a Poisson process with constant intensity and with positive jumps, e.g., as
in [32]. However, in this paper we are only interested in studying the effect of
external credit risk on stock prices coming from the external group of defaultable
entities, and therefore our jump-part in the dynamics of the stock will only include
negative jumps occurring at the external default times. Furthermore, if the default-
able entities used in our stock price model have issued bonds (or stocks) which are
publicly traded on major financial markets, then typically their default times are
exogenously observed, as for example the default of Lehmann Brothers in 2008. On
the other hand, if a Poisson process drives the times when the stock price jumps,
then these jump times can be difficult to observe exogenously and also difficult to
assign to a specific financial event.

We want to emphasize that we in this paper do not focus on how to estimate
the involved parameters describing our stock model, including the parameters for
the defaultable entities affecting the equity prices. Instead, the main goal of this
paper is to derive analytical stock portfolio quantities in our equity-credit hybrid
model and then use these to numerically study the time evolution of VaR for equity
portfolios and compare the VaR numbers with corresponding values coming from
alternative models, such as the Kou model and the Black-Scholes model. The topic
of estimating parameters in stock price models with jumps under the real probabil-
ity measure is a complex problem, see for example [16,33] and [37], which all focus
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on jumps coming from Poisson processes and not from exogenous defaults as in this
paper. Furthermore, since the number of defaults of large companies are scarce, es-
timation of the parameters for the defaultable entities under the physical probability
measure is also challenging and in fact a completely separate credit risk problem not
connected to our stock price model. However, to get a better understanding of how
VaR-values in our stock price model are affected by the credit parameters, [25] in-
vestigated stock portfolio VaR as function of some of the parameters describing the
defaultable entities, such as the one-factor Gaussian copula correlation parameter
when it runs through an interval on the positive real line bounded by one.

The rest of this paper is organized as follows. First, in Section 2 we consider one
stock where the stock price can jump at default times belonging to an exogenous
group of defaultable entities, and then derive all relevant quantities, such as the
expected value, conditional expected value, density, and distribution both for the
stock and its loss process. Next, in Section 3 we prove that the stock price model in
this paper can never be equal in distribution with a model where them default times
are replaced with them first jumps of some Cox process, in particular not a Markov-
modulated Poisson process, where m is the number of defaultable entities affecting
the stock price. Hence, the model presented in this paper is unique in the sense that
it can not be seen as a special case of, e.g., the papers [9] or [32], or any other model
based on [32] where the Poisson process is replaced with a Cox process and where
all jumps in the stock price are negative and have the same distribution. In Section
4, we generalize the single-stock dynamics in Section 2 to a heterogeneous portfolio
of stocks and define the loss process for the stock portfolio. Furthermore, for small
time points we make a linearization of the portfolio loss process and then derive a
computationally tractable expression for the distribution of the linearized loss. For
larger time points t, the linear approximations to the stock portfolio in Section 2
will fail, but in Section 5 we outline a method that will work for arbitrary time
points for large homogeneous stock portfolios and derive a convenient expression
for the distribution of the portfolio loss in such settings by using large portfolio
approximations. In Section 6, we present a version of the [32] model restricted to
only having negative jumps and also derive some important quantities which will
be used in the numerical section were we compare stock portfolio VaR-values in
this Kou model with corresponding VaR-numbers coming from an equity model
with jumps at defaults outlined in Section 5. In the numerical part of the paper
covered in Section 7-10, we give several practical applications of our developed stock
price model. First, in Section 7 we study Value-at-Risk over a two-year period for
the loss of one single stock when the stock price is defined as in Section 2 in a
model where the default times are exchangeable, conditionally independent, and
have CIR-intensities. In Section 8, we repeat similar VaR-studies as in Section 7,
but now for a portfolio of stocks in a setting with jumps in all stock prices occurring
at default times driven by a one-factor copula model, and by using the small-time
expansion formulas for the loss process derived in Section 4. In the Gaussian copula
model, in Section 8 we also do VaR computations for large stock portfolios by using
the large portfolio approximation formulas derived in Section 5, both for a 20-day
period in time steps of one trading day, but also over a two-year period in time
steps of one month. In Section 9, we repeat the same type of studies as in Section
8, but now for a Clayton copula in the large homogeneous stock portfolio case.
All computations done in Sections 7-9 heavily rely on efficient numerical methods
developed in [25] for computing the distribution of the number of defaults among



RISK MANAGEMENT OF STOCK PORTFOLIOS 5

the defaultable entities creating the jumps in the stock prices. Finally, in Section 10
we compute VaR for a stock portfolio model derived from the [32] model, restricted
to only having negative jumps, as outlined in Section 6, and then compare these
VaR-values with the corresponding VaR-metrics coming from our jump-at-defaults
model for a one-factor Gaussian copula model as outlined in Section 5.

2. The one-dimensional case. In this subsection, we consider one stock where
the stock price can jump at default times belonging to an exogenous group of
defaultable entities. We first define the dynamics of the stock price under the real
(physical) probability measure P that will be used throughout the first sections of
the paper. Furthermore, we also derive all relevant quantities for the single stock,
such as the expected value, conditional expected value, density, and distribution
both for the stock and its loss process. We start with the following definition of the
stock price.

Definition 2.1. Consider a group of m defaultable entities C1, . . . ,Cm with in-
dividual default times τ1, τ2 . . . , τm, and let Ṽ1, . . . , Ṽm be random variables which
have bounded expected values, satisfy Ṽi ≥ −1, and are independent of τ1, τ2 . . . , τm.
Let company A be an entity which does not belong to the group C1, . . . ,Cm, and
let St denote the price of the stock to company A at time t. The dynamics of St

under the real probability measure P is defined as

dSt = St−dYt (2.1)

where Yt is given by

Yt = µt+ σWt +

m∑
i=1

Ṽi1{τi≤t} (2.2)

and Wt is Brownian motion independent of the default times τ1, τ2 . . . , τm and
Ṽ1, . . . , Ṽm. Finally, σ ≥ 0 is the so called volatility and µ is denoted as the drift of
the stock price St.

Remark 2.2. We remark that the default times τ1, τ2 . . . , τm in Definition 2.1
can come from any credit portfolio model as long as the jumps Ṽ1, . . . , Ṽm in the
stock prices at the default times τ1, τ2 . . . , τm are independent of these defaults
and also independent of the Brownian motion. We can, for example work, with
heterogeneous or homogeneous copula based models studied in, e.g., [1,8,14,19,29,
35, 36], or heterogeneous or homogeneous conditional independent intensity based
models, such as in [3–5], and [2], as well as heterogeneous or homogeneous contagion
models studied in, e.g., [10, 11,17,20–24,27,34], and [18].

Remark 2.3. Relation to the model [32]. Note that the stock price St in
Definition 2.1 is related to the seminal paper [32]. The main difference between
[32] and Definition 2.1 is that [32] considers jumps coming from a Poisson process
with constant intensity, implying possibly infinity many jumps, while the jumps in
Definition 2.1 are due to the default times τ1, τ2 . . . , τm, which comes from a finite
group of m defaultable entities C1, . . . ,Cm. Hence, Definition 2.1 implies that
at each default time τi among the m entities C1, . . . ,Cm, the stock price St will
jump so that ∆Sτi ̸= 0 and the jump-times of St therefore have a direct financial
interpretation, namely the default times τi among the firms C1, . . . ,Cm. Hence,
the major difference between St in Definition 2.1 in this paper and the model by [32]
is that in Definition 2.1 we have explicitly inserted “external” credit risk (from the
external group C1, . . . ,Cm) into the equity dynamics for St, effectively creating
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a type of hybrid risk model, that is, the stock price model St involves both equity
and credit risk, although the credit risk comes from an external group of m entities
C1, . . . ,Cm. In Definition 2.1, it is possible to add another jump process in the
dynamics of St, for example a Poisson process with constant intensity which jumps
just as in [32]. However, in this paper we are only interested in studying the effect
of external credit risk on St coming from the external group of defaultable entities
C1, . . . ,Cm, and therefore our jump-part in the dynamics of St will only include
the jumps coming from the default times τ1, τ2 . . . , τm of C1, . . . ,Cm. Another
remark is that [32] mainly studies option pricing directly under the real measure P
by using the Euler equation where both the endowment process and the stock price
follows the type of jump diffusion as given in Section 2 of [32], and where the utility

function has the special form U(c, t) = e−θt cα

α for 0 < α < 1 or U(c, t) = e−θt ln c for
α = 0. In this paper, we will focus on equity risk management of stock portfolios
(such as Value-at-Risk) where the individual stock prices have downward jumps
down at the defaults of an exogenous group of defaultable entities C1, . . . ,Cm, as
given in Definition 2.1, and we will consider both univariate and multivariate stock
portfolios, as well as the case where the number of stocks in the portfolio is large.
In our Value-at-Risk studies of the stock portfolios, we are in particularly interested
in studying the effect of external credit risk coming from the external defaultable
group of entities.

Finally, we remark that if the defaultable entities C1, . . . ,Cm have issued bonds
and/or stocks which are publicly traded on major financial markets, then typically
the default times τ1, τ2 . . . , τm are directly observable on the market, and the ob-
servations are exogenously observed regardless of if the stock price model for St

includes these defaults or not. This has to be compared with if a Poisson process
drives the jumps which can be difficult to observe exogenously and also difficult to
assign to specific financial events.

Remark 2.4. On the possiblity to include company A in the group C1, . . . ,
Cm. We remark that, in Definition 2.1, it is possible to let company A be one of
the entities C1, . . . ,Cm, for example A = Cm where we then set Ṽm = −1 so
that St = 0 for τm ≤ t where τm is the default time of A. Including A in the
group C1, . . . ,Cm where, e.g., A = Cm will create an extra complexity in the
stock-related formulas, in particular if the default time of A will be correlated with
the default times of C1, . . . ,Cm−1. However, in this paper we are only interested
in studying the effect of external credit risk coming from the external defaultable
group of entities C1, . . . ,Cm (for example when studying how the external credit
risk affect Value-at-Risk for St), and we will therefore in this paper always assume
that company A will not belong to the defaultable group C1, . . . ,Cm.

Remark 2.5. Stochastic volatility. In the dynamics of Definition 2.1, it is
possible to replace the constant volatility with, e.g., a stochastic volatility, as in
the Heston model presented in [28]. However, allowing for a stochastic volatility
such as in [28] will no longer lead to closed-formulas for the stock price dynamics
or semi-closed formulas for the portfolio loss distribution. Instead, we have to rely
on Fourier inversion techniques (e.g. FFT-methods) to find the distribution of the
stock portfolio losses, which will make the Value-at-Risk computations much more
time-consuming. Therefore, will in this paper not consider stochastic volatilities in
the stock price model given by Definition 2.1.
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We now state the following useful proposition which is proved in Subsection A.1
of Appendix A.

Proposition 2.6. Let St be a stock price given by Definition 2.1 under the real
probability measure P. Then, with notation as above, we have

St = S0 exp

((
µ− 1

2
σ2

)
t+ σWt

) m∏
i=1

(
1 + Ṽi1{τi≤t}

)
. (2.3)

Let Ṽi be the random variable in Definition 2.1 connected to default of company
Ci at the random default time τi in Definition 2.1. Then, Proposition 2.6 implies
that for any default time τi among the m entities C1, . . . ,Cm, we have that

Sτi = Sτi−

(
1 + Ṽi

)
or equivalently

Sτi − Sτi−

Sτi−
= Ṽi

i.e., there is a relative jump of random size Ṽi of the stock price St to company A
at the default time τi of entity Ci, where we remind that Ṽi ≥ −1.

Note that if there are no jumps at the defaults of C1, . . . ,Cm, that is, if Ṽn = 0
for all k in Definition 2.1, then (2.3) in Proposition 2.6 implies that we are back in
the classical Black-Scholes model under the real (physical) probability measure P,
with drift µ and volatility σ, that is

St = S0 exp

((
µ− 1

2
σ2

)
t+ σWt

)
. (2.4)

In the paper [32], the jumps Ṽi can be both positive or negative, where the jumps
occur at the arrivals of a Poission process, implying that the stock price can jump
both up and down. In this paper, we will consider all defaults among the m entities
C1, . . . ,Cm in Definition 2.1 as negative news for company A, implying that the
relative jumps Ṽi of the stock price St to company A at each default of C1, . . . ,Cm

will be negative. Hence, in this paper the stock price St will jump downwards at
the default times τ1, τ2 . . . , τm. Furthermore, we define Ṽi as follows.

Definition 2.7. Let Ũ1, . . . , Ũm be arbitrary non-negative random variables which
have bounded expected values, are independent of the default times τ1, τ2 . . . , τm
and are also independent of Wt in Definition 2.7. Then, we define the negative
random variables Ṽ1, . . . , Ṽm as

Ṽi = e−Ũi − 1 (2.5)

for each defaultable entity C1, . . . ,Cm.

From (2.5), it is easy to see that

Ṽi1{τi≤t} = exp
(
−Ũi1{τi≤t}

)
− 1 for all t ≥ 0

so that
m∏
i=1

(
1 + Ṽi1{τi≤t}

)
= exp

(
−

m∑
i=1

Ũi1{τi≤t}

)
. (2.6)

Hence, in view of Definition 2.10 and Equation (2.6), we state the following corollary
to Proposition 2.6.
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Corollary 2.8. Let St be a stock price given by Definition 2.1 under the real prob-
ability measure P and where the jumps Ṽ1, . . . , Ṽm are distributed as in Definition
2.7 via the arbitrary non-negative random variables Ũ1, . . . , Ũm ∈ L1. Then, with
notation as above, we have

St = S0 exp

((
µ− 1

2
σ2

)
t+ σWt −

m∑
i=1

Ũi1{τi≤t}

)
. (2.7)

In this paper, we are primary interested in finding computationally tractable
expressions for the distribution of the stock price St, and use this distribution in
various risk management applications under the real probability measure P. Under
Definition 2.1 and Definition 2.7 with heterogeneous distributions for Ũ1, . . . , Ũm,
it is then clear from Corollary 2.8 that the distribution of the stock price St will be
a sum containing up to 2m different terms. Furthermore, to find the P [St ≤ x] we
need, for each set of defaultable entitles ik = (i1, . . . , ik), ik ⊆ {1, . . . ,m} among the

group C1, . . . ,Cm, to be able to find expressions for the distribution of
∑k

n=1 Ũin .

Note that there are
(
m
k

)
different ways to pick out a subset ik ⊆ {1, . . . ,m} such

that ik = (i1, . . . , ik), which represents the defaults of the k entities Ci1 , . . . ,Cik

among the m entities C1, . . . ,Cm, and where the ordering of i1, . . . , ik is ignored.
The ordering of how the group Ci1 , . . . ,Cik defaults is not important, explaining
the term

(
m
k

)
compared to the case where ordering matters, which leads to k!

(
m
k

)
different ways to pick out ik. The reason why we can ignore the ordering of the
defaults follows from the structure of the jumps in (2.7) in Corollary 2.8 where we
only need to keep track of if an entity Ci has defaulted or not. Thus, the total
number of possible distinct terms in the expression for P [St ≤ x] will be

m∑
k=0

(
m

k

)
= 2m .

For example, if m = 15 with m different distributions of Ũ1, . . . , Ũm, this will then
lead to up to possibly 215 = 32768 different terms in the distribution P [St ≤ x].
These observations makes the definition of the stock price St in Definition 2.1 and
Definition 2.7 with heterogeneous distributions for Ũ1, . . . , Ũm unusable from a prac-
tical point of view, even for moderate sizes m of the group of entities C1, . . . ,Cm

that affect the stock price.
However, if Ũ1, . . . , Ũm are exchangeable, for example if Ũ1, . . . , Ũm is an i.i.d

sequence and thus are homogeneous in their distributions, then the number of terms
in the sums for P [St ≤ x] will reduce from 2m to justm terms, which will be practical
to handle for very largem-values, such asm > 100 entities in the group C1, . . . ,Cm.

To see why the terms reduce from 2m to m, let N
(m)
t be a point process that counts

the number of defaults among the m defaultable entities C1, . . . ,Cm with default
times τ1, τ2 . . . , τm, that is

N
(m)
t =

m∑
i=1

1{τi≤t} . (2.8)

Furthermore, if Ũ1, . . . , Ũm is an i.i.d sequence and if U1, . . . , Um is another i.i.d
sequence with the same distribution as Ũ1, . . . , Ũm, then we have that

m∑
i=1

Ũi1{τi≤t}
d
=

Nm
t∑

n=1

Un (2.9)
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where N
(m)
t is defined as in (2.8), so Corollary 2.8 and (2.9) therefore imply that

St
d
= S0 exp

(µ− 1

2
σ2

)
t+ σWt −

N
(m)
t∑

n=1

Un

 (2.10)

where we remind that for two random variables X and Y , the notation X
d
= Y

means that X and Y have the same distribution. In view of Equation (2.9)-(2.10),

we will sometimes use the notation U1, . . . , Um and V1, . . . , Vm instead of Ũ1, . . . , Ũm

and Ṽ1, . . . , Ṽm, and sometimes write St = ... instead of St
d
= ... in Equation (2.10).

Remark 2.9. The reason why the exchangeability of the jumps Ũ1, . . . , Ũm are
important is that, if this is not true, we have to keep track of which of the com-
panies C1, . . . ,Cm have defaulted up to time t, while in the exchangeability case
for Ũ1, . . . , Ũm we only need to keep track of how many of C1, . . . ,Cm that have

defaulted up to time t, i.e. we only need to model N
(m)
t defined as in (2.8).

Next, we make the following assumption on U1, . . . , Um and V1, . . . , Vm.

Definition 2.10. Let U1, . . . , Um be an i.i.d sequence of exponentially distributed
random variables which are independent of Wt and also independent of the default
times τ1, τ2 . . . , τm. Then, we define the i.i.d sequence V1, . . . , Vm as

Vn = e−Un − 1 where Un
d
= Exp(η) with E [Un] =

1

η
. (2.11)

From (2.11) in Definition 2.1, we see that Un is exponentially distributed with
density ηe−ηu for u ≥ 0, and that Vn ≥ −1 for each n.

Remark 2.11. Note that if η → ∞, then Un → 0 almost surely under P, so with
a slight abuse of notation, we can identify Un = 0 with “η = ∞”.

The definition in (2.11) is similar to the one on p.1087 in [32], but where we here
restrict ourselves to only negative jumps in stock price, while [32] allows for both
positive and negative stock price jumps. Assuming only negative jumps as in our
model will lead to a more conservative or prudent stock price model which in partic-
ular will lead to larger Value-at-Risk losses, and should therefore be more favourable
among financial regulators (such as e.g. SEC, FCA, BaFin etc.) compared with
models that also includes positive jumps in stock prices.

Remark 2.12. Note that our choice of Ui in Definition 2.1 as an exponentially dis-
tributed variable will together with the exchangeability condition lead to analytical
expressions for the distribution of St, but also for the stock portfolio losses studied
in Section 4 and Section 5. Another choice of Ui leading to analytical expressions
for the portfolio loss distributions is a normal distribution, see e.g in [41]. How-
ever, sums of i.i.d normal distributions will have a non-zero probability of attaining
positive values, even though the individual means are negative. Note that having
positive jumps in stocks at defaults of large corporates is very unusual. For exam-
ple, at the default of Lehmann Brothers on September 15th, 2008, there was a 4.5%
drop in the Dow-Jones Industrial Average index during the trading day, while the
S&P 500 jumped down nearly 5% the same day, see in [31].

In view of Definition 2.10 and Equation (2.10), we state the following corollary
to Proposition 2.6.
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Corollary 2.13. Let St be a stock price given by Definition 2.1 under the real
probability measure P where the jumps Ṽ1, . . . , Ṽm are distributed as V1, . . . , Vm in
Definition 2.10 with η > 0. Then, with notation as above,

St
d
= S0 exp

(µ− 1

2
σ2

)
t+ σWt −

N
(m)
t∑

n=1

Un

 . (2.12)

Next, define the loss process L
(S)
t for the stock St at time t with reference to the

starting time 0, as

L
(S)
t = − (St − S0) (2.13)

where we note that a gain implies that the loss L
(S)
t is negative. We are interested

in computing Value-at-Risk for L
(S)
t in our model for a stock price with jumps at

defaults, that is, we want to compute

VaRα

(
L
(S)
t

)
= inf

{
y ∈ R : P

[
L
(S)
t > y

]
≤ 1− α

}
= inf

{
y ∈ R : F

L
(S)
t

(y) ≥ α
}

(2.14)

where F
L

(S)
t

(x) is the distribution of L
(S)
t and α is the confidence level, typically

given by 95%, 99%, or 99.9%, that is, α = 0.95, α = 0.99, or α = 0.999. So, if St is
given as in Definition 2.1 with jumps as in Definition 2.10, then in view of Corollary

2.13, the loss L
(S)
t in (4.9) can be reformulated as

L
(S)
t

d
= S0

1− exp

(µ− 1

2
σ2

)
t+ σWt −

N
(m)
t∑

n=1

Un

 (2.15)

where for any t > 0 we have supL
(S)
t = S0, since St ≥ 0 almost surely. Next, we

state the following useful theorem which is proved in Subsection A.2 of Appendix
A.

Theorem 2.14. Let St be a stock price under the real probability measure P defined
as in Corollary 2.13. Then, with notation as above, we have that

E
[
St |N (m)

t

]
= S0e

µt

(
η

η + 1

)N
(m)
t

where E
[
St |N (m)

t = k
]
= S0e

µt

(
η

η + 1

)k

(2.16)
for k = 0, 1, 2, . . . ,m and

E [St] = S0e
µtE

( η

η + 1

)N
(m)
t

 = S0e
µt

m∑
k=0

(
η

η + 1

)k

P
[
N

(m)
t = k

]
. (2.17)

Furthermore,

P [St ≤ x] =

m∑
k=0

Ψk (x, t, µ, σ, S0, η)P
[
N

(m)
t = k

]
(2.18)

where the mappings Ψk (x, t, µ, σ, u, η) for u > 0 are defined as

Ψk (x, t, µ, σ, u, η)

=

∫ ∞

0

Φ

(
ln x

u −
(
µ− 1

2σ
2
)
t+ y

σ
√
t

)
ηe−ηy (ηy)

k−1

(k − 1)!
dy for 0 < k ≤ m (2.19)



RISK MANAGEMENT OF STOCK PORTFOLIOS 11

and Ψ0 (x, t, µ, σ, u, η) for u > 0 is given by

Ψ0 (x, t, µ, σ, u, η) = Φ

(
ln x

u −
(
µ− 1

2σ
2
)
t

σ
√
t

)
(2.20)

where Φ(x) is the distribution function of a standard normal random variable. Fur-
thermore,

F
L

(S)
t

(x) = P
[
L
(S)
t ≤ x

]
= 1−

m∑
k=0

Ψk

(
1− x

S0
, t, µ, σ, 1, η

)
P
[
N

(m)
t = k

]
(2.21)

where x ≤ S0, and for any t > 0, we have supL
(S)
t = S0. The density fSt (x) of St

is given by

fSt
(x) =

m∑
k=0

ψk (x, t, µ, σ, S0, η)P
[
N

(m)
t = k

]
for x > 0, t > 0 (2.22)

where the mappings ψk (x, t, µ, σ, S0, η) for S0 > 0, x > 0, andt > 0 are defined as

ψk (x, t, µ, σ, S0, η)

=
1

xσ
√
t

∫ ∞

0

φ

(
ln x

S0
−
(
µ− 1

2σ
2
)
t+ y

σ
√
t

)
ηe−ηy (ηy)

k−1

(k − 1)!
dy for 0 < k ≤ m

(2.23)

and ψ0 (x, t, µ, σ, S0, η) for S0 > 0 is given by

ψ0 (x, t, µ, σ, S0, η) =
1

xσ
√
t
φ

(
ln x

S0
−
(
µ− 1

2σ
2
)
t

σ
√
t

)
(2.24)

where φ(x) = 1√
2π
e−

x2

2 is the density of a standard normal random variable.

A full proof of Theorem 2.14 is given in Subsection A.2 of Appendix A.
We now make some remarks connected to Theorem 2.14.

Remark 2.15. As pointed out in Remark 2.3, if the defaultable entitiesC1, . . . ,Cm

have issued bonds and/or stocks which are publicly traded on major financial mar-
kets, then typically the default times τ1, τ2 . . . , τm are directly observable on the
market at the defaults, and these observations are done exogenously without the
knowledge of St, that is, regardless if the stock price model for St includes the

defaults or not. Hence, the point process N
(m)
t =

∑m
i=1 1{τi≤t} is in practice al-

ways observable, making the quantities E
[
St |N (m)

t

]
and E

[
St |N (m)

t = k
]
given

by (2.16) in Theorem 2.14 realistic to compute under the real probability measure
P. If the default times τ1, τ2 . . . , τm are unobservable on the market, and therefore

also making the counting process N
(m)
t unobservable, or if the jumps come from a

Poisson process with arrival times that lack financial interpretation, and therefore
could not be observed directly, then it less clear how to compute, e.g., the quantity

E
[
St |N (m)

t

]
in practice, since N

(m)
t would not be known to us. Note however that

E [St] in (2.17) will always be possible to compute, regardless if N
(m)
t is observable

or not, since to find E [St] we do not need the exact value of N
(m)
t , but only its

distribution.
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Note that the η-parameter in the mapping Ψ0 (x, t, µ, σ, S0, ρS , η) in (2.20) for
k = 0 will have no impact, and is only present for notational convenience given the
sum in the expression of (2.18) which runs from k = 0 to k = m.

Some remarks on the expected stock price. Let S
(BS)
t be the stock price in

the Black-Scholes model under the real probability measure P given by (2.4), that
is

S
(BS)
t = S0 exp

((
µ− 1

2
σ2

)
t+ σWt

)
(2.25)

so that

E
[
S
(BS)
t

]
= S0e

µt . (2.26)

Let St be a stock price given by Definition 2.1 under the real probability measure
P and where the jumps Ṽ1, . . . , Ṽm are distributed as V1, . . . , Vm in Definition 2.10
with η > 0. Then, Equation (2.17) in Theorem 2.14 together with (2.26) implies
that

E [St] = E
[
S
(BS)
t

]
E

( η

η + 1

)N
(m)
t

 . (2.27)

We clearly see that if 0 < η < ∞, then E

[(
η

η+1

)N(m)
t

]
< 1, and therefore (2.27)

implies the relationship

E [St] < E
[
S
(BS)
t

]
when 0 < η <∞ (2.28)

which is intuitively clear since the St will always have negative relative jumps at any

default time τi where N
(m)
t =

∑m
i=1 1{τi≤t}, that is, for the same Wt in St given by

Corollary (2.13) as in S
(BS)
t in (2.25), then Corollary (2.13) implies that St ≤ S

(BS)
t

almost surely under P. If Un = 0 for all n (or if “η = ∞”, see in Remark 2.11),
this means that there will be no jumps at the defaults τi, and St will coincide with

the Black-Scholes price S
(BS)
t , that is St = S

(BS)
t as stated in Equation (2.25), so

E [St] = E
[
S
(BS)
t

]
. We note that

∂

∂η
E

( η

η + 1

)N
(m)
t

 = E

N (m)
t

η2

(
η

η + 1

)N
(m)
t +1

 > 0 for η > 0 (2.29)

so E

[(
η

η+1

)N(m)
t

]
is strictly increasing in η > 0. Therefore, for a fixed time point

t, and for any 0 < β < 1, the equation E

[(
η

η+1

)N(m)
t

]
= β will have a unique

solution in η = η(β, t). This can be used when calibrating η. For example, if we

assume that the default counting process N
(m)
t will make the expected value of the

stock price St to β = 90% of the corresponding expected value of the Black stock

price S
(BS)
t , up to time, say T , that is

E [ST ] = βE
[
S
(BS)
T

]
(2.30)



RISK MANAGEMENT OF STOCK PORTFOLIOS 13

then (2.27) and (2.30) imply for any 0 < β < 1 that

E

( η

η + 1

)N
(m)
T

 = β (2.31)

which have a unique solution in η∗ = η(β, T ) > 0, and for most credit portfolio
models this solution η∗ has to be found numerically. Finally, we will often consider
the equation E [ST ] = S0, so from (2.26), (2.30), and (2.31), we see that when µ > 0,
then

E [ST ] = S0 if and only if E

( η

η + 1

)N
(m)
T

 = e−µT (2.32)

where we note that the condition E [ST ] = S0 implies that the defaults among
the entities C1, . . . ,Cm “wipes” out the expected log-growth for a corresponding
Black-Scholes model with drift µ up to time T . We will use condition (2.32) when
calibrating η in our numerical studies presented in Section 7, 8, 9, and 10.

VaR-expressions and related quantities. Given formula (2.21) for the distri-
bution of the stock price loss process F

L
(S)
t

(x) in Theorem 2.14, we will be able to

find Value-at-Risk for L
(S)
t with confidence level α, denoted by VaRα

(
L
(S)
t

)
, since

from (2.14) and the fact that St is a continuous random variable, then

VaRα

(
L
(S)
t

)
= F−1

L
(S)
t

(α) so that F
L

(S)
t

(
VaRα

(
L
(S)
t

))
= α (2.33)

where the second equation in (2.33) will be solved numerically to find VaRα

(
L
(S)
t

)
.

In the case where there are now jump at the defaults, i.e. when Un = 0 for all n, or

equivalently, in view of Remark 2.11, if “η = ∞”, then St = S
(BS)
t with S

(BS)
t given

by Equation (2.4), and the expression for VaRα

(
L
(S)
t

)
in (2.33) can then be solved

analytically, denoted by VaRBS
α

(
L
(S)
t

)
, and given as

VaRBS
α

(
L
(S)
t

)
= S0

(
1− exp

(
σ
√
tΦ−1 (1− α) +

(
µ− 1

2
σ2

)
t

))
. (2.34)

We will later in the numerical section use VaRBS
α

(
L
(S)
t

)
in (2.34) for the Black-

Scholes model when comparing with VaRα

(
L
(S)
t

)
coming from a stock price St

with jumps at the default arrivals in N
(m)
t and where η > 0.

We finally remark that almost all formulas in Theorem 2.14 require efficient and

quick methods of computing the number of default distribution P
[
N

(m)
t = k

]
.

3. Comparison with stock price models where jump times are driven
by Cox processes. Let St be a stock price under the real probability measure

P defined as in Corollary 2.13 where the jump process N
(m)
t is given by (2.8),

that is N
(m)
t =

∑m
i=1 1{τi≤t} and τ1, τ2 . . . , τm are the default times of the entities

C1, . . . ,Cm. Here, we remind that the default times τ1, τ2 . . . , τm creating N
(m)
t =∑m

i=1 1{τi≤t} can come from any credit portfolio model as long as the log-jumps in
the stock price St in are independent of these defaults and also independent of the
Brownian motion in the exponent of St, see also Remark 2.2.
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A relevant question is if the model for the stock price St in Corollary 2.13 can be

obtained, or replicated, by a model where N
(m)
t is replaced with a Cox process Nt

with some stochastic intensity λt adapted to some given filtration Ft. The question

can be reformulated as follows: does there exist a Cox process Nt such that N
(m)
t

is equal in distribution with Nt for the m first jumps for all time points t > 0.
The family of Cox processes, sometimes also denoted as doubly stochastic Pois-
son processes, includes, among others, standard Poisson processes, inhomogeneous
Poisson processes, Markov-modulated Poisson processes, and many other counting
processes. There are several equivalent definitions of a Cox process. Here, we use a
somewhat modified version of the definition in [7].

Definition 3.1. Cox processes (doubly stochastic Poisson process). Let Nt

be a point process adapted to the filtration Ft, and let λt be a nonnegative process
such that λt is F0-measurable for all t ≥ 0 and∫ t

0

λsds <∞ P -a.s. for all t ≥ 0. (3.1)

Then, if for all 0 ≤ s ≤ t and for all integers k ≥ 0 we have

P [Nt −Ns = k | Fs] = exp

(
−
∫ t

s

λudu

) (∫ t

s
λudu

)k
k!

(3.2)

we say that Nt is a (P,Ft)-doubly stochastic Poisson process, or for short, a doubly
stochastic Poisson process, or with a different terminology, an Ft Cox process driven
by λt.

An intuitive way to view a Cox process is that we first draw the realization of
λt, then conditional of knowing λt, we obtain the Cox process as an inhomogeneous
Poisson process with intensity λt. In practice, the filtration Ft will often be on the
form Ft = GX

∞ ∨ Ht where GX
t = σ (Xs; s ≤ t) and Xt is a stochastic process, and

λt = λ(Xt) for some non-negative mapping λ(·) : R 7→ R+. Furthermore, Ht is
typically a filtration generated by Nt or the jump times of Nt up to time t. For
more on practical settings regarding filtrations for Cox processes, see in [6].

Remark 3.2. Note that Definition 3.1 for a Cox process with intensity λt only
makes sense if λt > 0 for some t with strictly positive probability, since if this is
not true we have that λt = 0 for all t ≥ 0 P a.s, and then (3.2) implies that Nt = 0
almost surely under P. Hence, if λt = 0 for all t ≥ 0 P a.s, then the Cox process
Nt will never jump. Thus, when we talk about a Cox process Nt with intensity λt
defined as in (3.1), we always assume that P [λt > 0 for some t] > 0 since otherwise
Nt = 0 almost surely under P.

If {Sk} are the jump times of a Cox process Nt, we obviously have that

Nt =

∞∑
k=1

1{Sk≤t} (3.3)

where Sk < Sk+1 for k = 1, 2, . . .. One can construct the infinite sequence {Sk}
recursively via the process λt and an infinite i.i.d sequence {Ek} of exponentially dis-
tributed random variables with parameter one in a similar way as when constructing
an inhomogeneous Poisson process with deterministic time dependent intensity.

Now, going back to our original question in this section, we ask if it is possible
to “replicate” the stock price model for St in Corollary 2.13, either almost surely



RISK MANAGEMENT OF STOCK PORTFOLIOS 15

or in distribution, with a model where N
(m)
t is replaced by a Cox process Nt with

some stochastic intensity λt. Hence, in view of Corollary 2.13, we ask if there exists
a Cox process Nt with some stochastic intensity λt such that

S0 exp

((
µ− 1

2
σ2

)
t+ σWt −

Nt∑
n=1

Un

)
1{t<Sm+1}

d
= S0 exp

(µ− 1

2
σ2

)
t+ σWt −

N
(m)
t∑

n=1

Un

 (3.4)

for all t ≥ 0, which is equivalent with asking if there exists a Cox process Nt with
some stochastic intensity λt such that

Nt1{t<Sm+1}
d
= N

(m)
t for all t ≥ 0 (3.5)

where N
(m)
t is defined as in (2.8). Intuitively, it is clear that (3.5) is false since N

(m)
t

have support on the finite set {0, 1, . . . ,m}, while Nt have support on the countable
infinite set of natural integers as seen in (3.2), and we next formalize this idea as a
theorem. Hence, we next prove that (3.5) is impossible for a Cox process Nt with
some stochastic intensity λt, and therefore (3.4) is impossible for a Cox process Nt.

Theorem 3.3. Consider an arbitrary credit portfolio model with default times

τ1, τ2 . . . , τm and the process N
(m)
t =

∑m
i=1 1{τi≤t}. Then, there exists no Cox

process Nt such that Nt1{t<Sm+1}
d
= N

(m)
t for all t ≥ 0.

Proof. We prove our theorem by contradiction. First, assume that (3.5) holds, that
is, assume that there exists a Cox process Nt with some stochastic intensity λt such
that

Nt1{t<Sm+1}
d
= N

(m)
t for all t ≥ 0 (3.6)

whereN
(m)
t =

∑m
i=1 1{τi≤t}. By Remark 3.2, we have that P [λt > 0 for some t] > 0,

since otherwise Nt = 0 almost surely under P. Next, for any credit portfolio model
with default times τ1, τ2 . . . , τm, we have

P
[
N

(m)
t = k

]
≥ 0 for k = 0, 1, . . . ,m and t ≥ 0 (3.7)

and

P
[
N

(m)
t = k

]
= 0 for k > m and t ≥ 0 (3.8)

since N
(m)
t =

∑m
i=1 1{τi≤t}, and can thus never be bigger than m. Hence, it obvi-

ously holds that
m∑

k=0

P
[
N

(m)
t = k

]
= 1 for t ≥ 0 . (3.9)

Next, since we assume that (3.6) is true, then (3.6) implies that

P
[
Nt1{t<Sm+1} = k

]
= P

[
N

(m)
t = k

]
for k = 0, 1, . . . ,m and t ≥ 0 . (3.10)

Note that if Nt1{t<Sm+1} = k for k ≤ m, then Sk ≤ t < Sk+1. Also note that
Sk < Sm+1 for k = 1, . . . ,m, so if k ≤ m, then Sk ≤ t < Sk+1 implies that
1{t<Sm+1} = 1. Hence, for k ≤ m, we thus have that

P
[
Nt1{t<Sm+1} = k

]
= P [Nt = k] if k ≤ m and for any t ≥ 0 . (3.11)
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So, if (3.6) is true, we combine (3.10)-(3.11), and then get

P [Nt = k] = P
[
N

(m)
t = k

]
for k = 0, 1, . . . ,m and t ≥ 0 . (3.12)

Hence, if (3.6) is true, then (3.9) and (3.12) imply that

1 =

m∑
k=0

P
[
N

(m)
t = k

]
=

m∑
k=0

P [Nt = k] for t ≥ 0 . (3.13)

On the other hand, letting s = 0 in (3.2) and taking the expected value, we get that

P [Nt = k] = E

exp(−∫ t

0

λudu

) (∫ t

0
λudu

)k
k!

 > 0 for k ≥ 0 and t ≥ 0

(3.14)
where the strictly positive probabilities in (3.14) follow from Remark 3.2. Further-
more, by using the Taylor-expansion of ex together with standard rules for expecta-
tions and (3.14), it is easy to see that for all t ≥ 0, it holds that

∑∞
k=0 P [Nt = k] = 1

since

∞∑
k=0

P [Nt = k] = E

exp(−∫ t

0

λudu

) ∞∑
k=0

(∫ t

0
λudu

)k
k!

 = 1 for t ≥ 0 . (3.15)

Hence, we have that 1 =
∑∞

k=0 P [Nt = k] for t ≥ 0, so (3.13) and (3.15) then imply
that

P [Nt = k] = 0 for k > m and t ≥ 0 (3.16)

which contradicts (3.14) for k > m with non-zero intensity λt with positive proba-
bility; see also Remark 3.2. Hence, the assumption in (3.6) is therefore false, that
is, assumption (3.5) is false, and we can thus never find a Cox process Nt with
non-zero intensity λt with positive probability such that Nt1{t<Sm+1} is equal in

distribution with N
(m)
t for all t ≥ 0. This concludes the theorem.

Next, assume that there are no joint defaults among the default times {τi} =
{τ1, τ2 . . . , τm}, that is, for i ̸= j, assume that P [τi = τj ] = 0. Let {Tk} be the
ordering of the default times {τi}, and since there are no joint defaults, then Tk are
well defined for k = 1, 2, . . . ,m and T1 < T2 < . . . < Tm.

Recall that the infinite sequence {Sk} = {S1, S2, . . .} are the jump times of the
Cox process so that (3.3) holds, that is, Nt =

∑∞
k=1 1{Sk≤t}. In view of the above

notation together with the assumption of no joint defaults among {τi}, we can now
state the following corollary to Theorem 3.3.

Corollary 3.4. Consider an arbitrary credit portfolio model with default times
τ1, τ2 . . . , τm with no joint defaults, and let {Tk} be the ordering of {τi}. Then, Tk
can never have the same distribution as Sk for all k ≤ m, where {Sk} are the jump
times of a Cox process.

Proof. Let Nt be a Cox process so that (3.3) then implies

Sk = inf {t > 0 : Nt ≥ k} for k = 1, 2, 3, . . .

and thus

P [Sk ≤ t] = P [Nt ≥ k] = 1− P [Nt ≤ k − 1] for t > 0 and k = 1, 2, 3, . . . (3.17)
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For N
(m)
t =

∑m
i=1 1{τi≤t}, we similarly get

Tk = inf
{
t > 0 : N

(m)
t ≥ k

}
for k = 1, 2, . . . ,m

so that

P [Tk ≤ t] = P
[
N

(m)
t ≥ k

]
= 1−P

[
N

(m)
t ≤ k − 1

]
for t > 0 and k = 1, 2, . . . ,m .

(3.18)
From Theorem 3.3, we know that there is no Cox process Nt with non-zero intensity

λt with positive probability such thatNt1{t<Sm+1} is equal in distribution withN
(m)
t

for all t ≥ 0. Thus, from (3.17) and (3.18) it is clear that Sk can never be equal in
distribution with Tk for k = 1, 2, . . . ,m, and this concludes the corollary.

There exist several stock price models with jumps that builds on the model
by [32], but where the Poisson process in [32] is replaced with some Cox process.
For example, in [9], the authors build on [32], but use a Markov-modulated Poisson
process instead of a Poisson process. A Markov-modulated Poisson process is a Cox
process where the stochastic intensity λt is driven by a finite state continuous time
Markov Chain.

Remark 3.5. The stock price model in this paper can never be replicated
by an extension of [32] with some Cox process. In view of Theorem 3.3
and Corollary 3.4, we make the following observations. A stock price model with
jumps at the default times τ1, τ2 . . . , τm, as in Corollary 2.13, can never be equal
in distribution with a model where the default times are replaced with the m first
jumps of some Cox process, in particular not a Markov-modulated Poisson process.
Hence, the model presented in this paper is unique in the sense that it can not
be seen as a special case of the paper [9], [32], or any other model based on [32]
where the Poisson process is replaced with a Cox process and where all jumps in
the stock price are negative and have the same distribution. Furthermore, since our
model does not put any restriction on the type of default model for τ1, τ2 . . . , τm, the
distribution of St can vary a lot depending on the choice of credit portfolio model
for τ1, τ2 . . . , τm. In the numerical sections, we consider three different models:
A model with CIR-intenisites for the default times, a one-factor Gaussian copula
model for τi, and a Clayton copula model for the default times τi. Other credit
models that can be chosen are, for example, default contagion models such as those
in [11, 17, 22, 23, 27, 34], and such default contagion models produce much fatter

tails for the process N
(m)
t =

∑m
i=1 1{τi≤t} compared with Gaussian copula models,

CIR-intensity models, or other conditional independent default intensity models.

Even though Theorem 3.3 and Corollary 3.4 show that it is impossible to con-
struct the stock price model in Corollary 2.13 by using a Cox process Nt instead

of the default point process N
(m)
t =

∑m
i=1 1{τi≤t}, it is still interesting to compare

the stock price model in Corollary 2.13 where N
(m)
t is replaced with a Poisson

process. Such a comparison will be done in Section 6 producing a version of the
Kou model, [32], with only negative jumps, and then in Section 10 we numerically
compare our stock price model from Corollary 2.13 with the Kou model containing
only negative jumps as outlined in Section 6.

4. The multidimensional case: Small time approximations to loss dis-
tributions for heterogeneous stock portfolios with jumps at exogenous
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defaults. In this section, we generalize the single-stock dynamics in Section 2 to a
heterogeneous portfolio of stocks. Furthermore, we also define the loss process for
the stock portfolio. For small time points we make a linearization of the portfolio
loss process and derive a computationally tractable expression for distribution of
the linearized loss. We also consider the portfolio loss process and its linear ap-
proximation for small time points in the classical Black-Scholes portfolio case, i.e.
without any jumps in the stock prices. In our numerical studies in Section 8, we will
use the distribution of the linearized Black-Scholes portfolio loss as a benchmark for
the distribution of the linearized loss when the stock prices have jumps at defaults
of some external defaultabe entities.

Inspired by the dynamics of a single-stock price St discussed in Section 2, and in
particular Corollary 2.13, we now give the following definition.

Definition 4.1. Consider a group of m defaultable entities C1, . . . ,Cm with in-

dividual default times τ1, τ2 . . . , τm, and let N
(m)
t =

∑m
i=1 1{τi≤t}. Let companies

A1, . . . ,AJ be J different exchangeable entities which do not belong to the group
C1, . . . ,Cm, and let St,1, . . . , St,J denote the stock prices of companies A1, . . . ,AJ

at time t under the real probability measure P. Then, for each entity Aj , we define
the stock price St,j as

St,j = S0,j exp

(µj −
1

2
σ2
j

)
t+ σj

(
ρS,jWt,0 +

√
1− ρ2S,jWt,j

)
−

N
(m)
t∑

n=1

Un,j


(4.1)

where Wt,0,Wt,1, . . . ,Wt,J are J + 1 independent Brownian motions, and ρS,j ∈
[−1, 1] are constants. Furthermore, for each j = 1, 2, . . . , J , the m random variables
U1,j , . . . , Um,j are an i.i.d sequence distributed as

Un,j
d
= Exp(η) with E [Un,j ] =

1

η
(4.2)

where U1,j , . . . , Um,j are independent of the processes Wt,0,Wt,1, . . . ,Wt,J and also
independent of the default times τ1, τ2 . . . , τm. Furthermore, for each company Aj ,
the parameters σj > 0 and µj are the volatility and drift, the same as in the
one-dimensional case given in Definition 2.1 and Corollary 2.13.

Next, we make some remarks connected to Definition 4.1.

Remark 4.2. If we let Ũ1,j , . . . , Ũm,j be an i.i.d sequence with the same distribution

as U1,j , . . . , Um,j , then the jump term
∑N

(m)
t

n=1 Un,j in (4.1) can be replaced by the

more intuitive expression
∑m

i=1 Ũi,j1{τi≤t}, just as in the single-stock case in Section

2, since
∑N

(m)
t

n=1 Un,j
d
=
∑m

i=1 Ũi,j1{τi≤t}. However, in the derivations in our proofs,
it will be more convenient from a notational point of view to use the first version,

that is, the term
∑N

(m)
t

n=1 Un,j in (4.1).

Remark 4.3. Note that in Definition 4.1, all firms Aj have stock prices St,j with
i.i.d jumps U1,j , . . . , Um,j , with the parameter η defined as in (4.2). We can of course
also let the distributions for U1,j , . . . , Um,j be different among different entities Aj ,
for example, by letting

Un,j
d
= Exp(ηj) with E [Un,j ] =

1

ηj
where ηj ̸= ηi for Aj ̸= Ai . (4.3)
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However, allowing for heterogeneous jump parameters ηj among different firms Aj ,
as in (4.3), will unfortunately make it difficult to find analytical formulas for the
distribution of our stock portfolio losses. Therefore, in this paper we will always
assume homogeneous jump parameters, that is, η = η1 = η2 = . . . ηJ , which will
lead to analytical formulas for our portfolio related quantities.

Remark 4.4. Note that ρS,j ∈ [−1, 1], and, unless explicitly stated, throughout
this paper we will always assume that at least one company Aj has a correlation
such that ρS,j ̸= −1, 1 so that ρS,j ∈ (−1, 1).

Remark 4.5. Since the collection of i.i.d sequences U1,j , . . . , Um,j are exchange-
able for all companies Aj in Definition 4.1, that is Uk,j and Uk′,j′ have the same
distribution for any pairs (k, j) and (k′, j′), then, just as in Remark 2.2, we note
that the default times τ1, τ2 . . . , τm in Definition 4.1 can come from any type credit
portfolio model.

Remark 4.6. The stock prices St,1, St,2, . . . , St,J are correlated and have
simultaneous jumps. Since Wt,0 and Wt,j are independent Brownian motions
for each j and ρS,j ∈ [−1, 1], then from standard probability theory we know that

ρS,jWt,0 +
√
1− ρ2S,jWt,j used in (4.1) is also a Brownian motion. Hence, in view

of Definition 2.1, Definition 2.10, and Corollary 2.13, it is clear that the dynamics
of the stock price St,j for each firm Aj satisfies

dSt,j = St−,jdYt,j (4.4)

where Yt,j is given by

Yt,j = µjt+ σj

(
ρS,jWt,0 +

√
1− ρ2S,jWt,j

)
+

N
(m)
t∑

n=1

(
e−Un,j − 1

)
. (4.5)

Further, from the construction of St,j in (4.1) and Un,j in (4.2), stated in Definition
4.1, the stock prices St,1, St,2, . . . , St,J will be “correlated” via the factor process

Wt,0 when ρS,j ̸= 0, and also “correlated” via the default counting process N
(m)
t

for the entities C1, . . . ,Cm. In particular, all stock prices St,1, St,2, . . . , St,J will
have a jump at the default times τ1, τ2 . . . , τm, where the relative jumps of St,j will
be different almost surely under P, although they have same distribution given by
(4.2). Finally, each stock price St,j will satisfy the results in Theorem 2.14.

Next, consider a weighted stock portfolio consisting of w1, w2, . . . , wJ stocks cho-
sen for our portfolio at time t = 0, where the stocks are issued by the J companies
A1, . . . ,AJ with stock prices St,1, St,2, . . . , St,J that satisfy Definition 4.1. Then,
we define the portfolio value Vt as

Vt =

J∑
j=1

wjSt,j . (4.6)

We will in this paper define an equally value-weighted portfolio Vt as follows.

Definition 4.7. Equally value-weighted portfolio. Let S0 be a positive con-
stant. We say that the portfolio Vt in (4.6) is an equally value-weighted portfolio if
the weights wj are chosen so that

wjS0,j = S0 for j = 1, 2, . . . , J (4.7)
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and thus

V0 =

J∑
j=1

wjS0,j =

J∑
j=1

S0 = JS0 . (4.8)

The intuitive idea behind Definition 4.7 is that the portfolio weights wj are chosen
so that the value for the stock position in firm Aj at time t = 0 will have the same
amount given by S0 for all companies A1, . . . ,AJ that are contained in the portfolio
Vt.

Next, we define the portfolio loss process L
(V )
t for a general portfolio Vt at time

t with reference to the starting time 0 as

L
(V )
t = − (Vt − V0) (4.9)

where we note that a gain implies that the loss L
(V )
t is negative. We are interested

in computing Value-at-Risk for L
(V )
t in our model given by Definition 4.1, that is,

we want to compute

VaRα

(
L
(V )
t

)
= inf

{
y ∈ R : P

[
L
(V )
t > y

]
≤ 1− α

}
= inf

{
y ∈ R : F

L
(V )
t

(y) ≥ α
}

(4.10)

where F
L

(V )
t

(x) is the distribution of L
(V )
t and α is the confidence level, just as in

(2.14). Define Xt,j as

Xt,j =

(
µj −

1

2
σ2
j

)
t+ σj

(
ρS,jWt,0 +

√
1− ρ2S,jWt,j

)
−

N
(m)
t∑

n=1

Un,j (4.11)

where the right hand side of (4.11) is the same as in (4.1) in Definition 4.1, which
then implies that

St,j = S0,je
Xt,j . (4.12)

Then, for an equally value-weighted portfolio Vt as in Definition 4.7, the portfolio

loss L
(V )
t in (4.9) can be restated as

L
(V )
t = S0

J −
J∑

j=1

eXt,j

 . (4.13)

We want to find F
L

(V )
t

(x) = P
[
L
(V )
t ≤ x

]
so that we, for example, can compute

VaRα

(
L
(V )
t

)
given by (4.10). Unfortunately, finding analytical or semi-analytical

expressions of F
L

(V )
t

(x) is a challenging task. However, assuming that |Xt,j | will be
small for small t, we can use a first-order Taylor expansion of the term eXt,j , that
is

eXt,j ≈ 1 +Xt,j when |Xt,j | is small (4.14)

which typically will hold for small t. So, using (4.14) in (4.13) then implies that the

loss L
(V )
t for an equally value-weighted portfolio Vt as in Definition 4.7 is approxi-

mated by

L
(V )
t ≈ −S0

J∑
j=1

Xt,j when |Xt,j | is small for all j . (4.15)
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For Xt,j given by (4.11), we therefore define the linearized loss L∆V
t to the portfolio

loss L
(V )
t in an equally value-weighted portfolio as

L∆V
t = −S0

J∑
j=1

Xt,j (4.16)

so that (4.15) then implies that

P
[
L
(V )
t ≤ x

]
≈ P

[
L∆V
t ≤ x

]
when |Xt,j | is small for all j (4.17)

which typically will hold for small t. Next, we state a theorem which provides a com-
putationally tractable semi-analytical expression to the distribution P

[
L∆V
t ≤ x

]
for the linearized loss L∆V

t defined as in (4.16), which is equivalent to finding the

distribution of
∑J

j=1Xt,j .

Theorem 4.8. Consider an equally value-weighted portfolio as in Definition 4.7
where the J stock prices St,1, . . . , St,J are defined as in Definition 4.1 under the real
probability measure P. Then, with notation as above, we have that

P
[
L∆V
t ≤ x

]
= 1−

m∑
k=0

ΨV
k (x, t, µ, σ, S0, ρS , η)P

[
N

(m)
t = k

]
(4.18)

where the mappings ΨV
k (x, t, µ, σ, S0, ρS , η) for k ≥ 1 are defined as

ΨV
k (x, t, µ, σ, S0, ρS , η)

=

∫ ∞

0

Φ

 y − x
S0

−
∑J

j=1

(
µj − 1

2σ
2
j

)
t√

t

((∑J
j=1 σjρS,j

)2
+
∑J

j=1 σ
2
j

(
1− ρ2S,j

))
 ηe−ηy (ηy)

Jk−1

(Jk − 1)!
dy

(4.19)

and for k = 0, the mapping ΨV
0 (x, t, µ, σ, S0, ρS , η) is defined by

ΨV
0 (x, t, µ, σ, S0, ρS , η) = Φ

 − x
S0

−
∑J

j=1

(
µj − 1

2σ
2
j

)
t√

t

((∑J
j=1 σjρS,j

)2
+
∑J

j=1 σ
2
j

(
1− ρ2S,j

))

(4.20)

where Φ (x) and φ (x) are the distribution function and density to a standard normal
random variable.

Proof. First, since S0 > 0, and in view of (4.16), after some rearranging, we get

P
[
L∆V
t ≤ x

]
= 1− P

 J∑
j=1

Xt,j ≤ − x

S0

 (4.21)

and we therefore seek the distribution of
∑J

j=1Xt,j . From Definition 4.1 and (4.11),
we can rewrite Xt,j as

Xt,j = Zt,j +

(
µj −

1

2
σ2
j

)
t−

N
(m)
t∑

n=1

Un,j (4.22)
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where Zt,j is defined by

Zt,j = σj

(
ρS,jWt,0 +

√
1− ρ2S,jWt,j

)
(4.23)

and the terms on the right-hand side of (4.23) are the same as in Equation (4.1) in
Definition 4.1. Then,

P

 J∑
j=1

Xt,j ≤ − x

S0

 = P

 J∑
j=1

Zt,j −
J∑

j=1

N
(m)
t∑

n=1

Un,j ≤ − x

S0
−

J∑
j=1

(
µj −

1

2
σ2
j

)
t


(4.24)

For notational convenience, we define a(x) as

a(x) = − x

S0
−

J∑
j=1

(
µj −

1

2
σ2
j

)
t (4.25)

so that (4.24) can be rewritten as

P

 J∑
j=1

Xt,j ≤ − x

S0

 = P

 J∑
j=1

Zt,j −
J∑

j=1

N
(m)
t∑

n=1

Un,j ≤ a(x)

 . (4.26)

Next, we note that

P

 J∑
j=1

Zt,j −
J∑

j=1

N
(m)
t∑

n=1

Un,j ≤ a(x)



=

m∑
k=0

P

 J∑
j=1

Zt,j −
J∑

j=1

k∑
n=1

Un,j ≤ a(x)

∣∣∣∣∣∣N (m)
t = k

P
[
N

(m)
t = k

]
(4.27)

and since Wt,j and Un,j are independent of N
(m)
t for all j and n, then by using the

same arguments which led to the right-hand side in (A.2.3) in Theorem 2.14, we
get

P

 J∑
j=1

Zt,j −
J∑

j=1

k∑
n=1

Un,j ≤ a(x)

∣∣∣∣∣∣N (m)
t = k



= P

 J∑
j=1

Zt,j −
J∑

j=1

k∑
n=1

Un,j ≤ a(x)

 .
(4.28)

From the definition of Zt,j in (4.23), we have that

J∑
j=1

Zt,j =

J∑
j=1

σj

(
ρS,jWt,0 +

√
1− ρ2S,jWt,j

)

=Wt,0

J∑
j=1

σjρS,j +

J∑
j=1

σj

√
1− ρ2S,jWt,j (4.29)

and since Wt,0,Wt,1, . . . ,Wt,J are J+1 independent Brownian motions, then (4.29)
and standard results from probability theory together with some computations give
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that

J∑
j=1

Zt,j
d
=

√√√√√√t


 J∑

j=1

σjρS,j

2

+

J∑
j=1

σ2
j

(
1− ρ2S,j

)X (4.30)

where X is a standard normal random variable. Let GJk be random variables
independent of X where GJk is a gamma-distributed random variable such that

GJk
d
= Gamma(Jk, η) where k ≥ 1 is an integer. Then, in view of Definition 4.1,

standard probability theory, and using the same arguments that led to (A.2.5) in
Theorem 2.14, we have that

J∑
j=1

Zt,j −
J∑

j=1

k∑
n=1

Un,j
d
=

√√√√√√t


 J∑

j=1

σjρS,j

2

+

J∑
j=1

σ2
j

(
1− ρ2S,j

)X −GJk .

(4.31)
Next, by using (4.31) in a version of Equation (A.2.11) in Theorem 2.14, we obtain

P

 J∑
j=1

Zt,j −
J∑

j=1

k∑
n=1

Un,j ≤ a(x)



=

∫ ∞

0

Φ

 a(x) + y√
t

((∑J
j=1 σjρS,j

)2
+
∑J

j=1 σ
2
j

(
1− ρ2S,j

))
 fGJk

(y)dy (4.32)

where fGJk
(y) = ηe−ηy(ηy)Jk−1

(Jk−1)! is the density of GJk and Φ (x) is the distribution

function to a standard normal random variable. If k = 0, there are no jump-terms,
so the right-hand side of (4.28) reduces to

P

 J∑
j=1

Zt,j ≤ a(x)

 = Φ

 a(x)√
t

((∑J
j=1 σjρS,j

)2
+
∑J

j=1 σ
2
j

(
1− ρ2S,j

))
 (4.33)

where we also used (4.30) for the distribution of
∑J

j=1 Zt,j . Hence, using (4.32)

for k ≥ 1 and (4.33) for k = 0 on the right-hand side of (4.28) and (4.27) and
(4.26) together with the definition of a(x) in (4.25) finally implies that (4.21) can
be rewritten as

P
[
L∆V
t ≤ x

]
= 1−

m∑
k=0

ΨV
k (x, t, µ, σ, S0, ρS , η)P

[
N

(m)
t = k

]
where the mappings ΨV

k (x, t, µ, σ, S0, ρS , η) for k > 1 are defined by

ΨV
k (x, t, µ, σ, S0, ρS , η)
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=

∫ ∞

0

Φ

 y − x
S0

−
∑J

j=1

(
µj − 1

2σ
2
j

)
t√

t

((∑J
j=1 σjρS,j

)2
+
∑J

j=1 σ
2
j

(
1− ρ2S,j

))
 ηe−ηy (ηy)

Jk−1

(Jk − 1)!
dy

and for k = 0 the mapping ΨV
0 (x, t, µ, σ, S0, ρS , η) is defined as

ΨV
0 (x, t, µ, σ, S0, ρS , η) = Φ

 − x
S0

−
∑J

j=1

(
µj − 1

2σ
2
j

)
t√

t

((∑J
j=1 σjρS,j

)2
+
∑J

j=1 σ
2
j

(
1− ρ2S,j

))


proving (4.18), (4.19), and (4.20), which concludes the theorem.

We note that the η-parameter in the mapping ΨV
0 (x, t, µ, σ, S0, ρS , η) in (4.20)

for k = 0 will have no impact, and is only present for notational convenience given
the sum in the expression of (4.18) which runs from k = 0 to k = m.

Remark 4.9. Note that Theorem 4.8 is stated for a heterogeneous stock portfolio
so that the parameters µj , σj , ρS,j , and S0,j can have different values for different
firmsAj , but where the weights wj in the portfolio Vt are chosen so that wjS0,j = S0

for all companies where S0 is a positive constant. Sometimes, we want to study the
case where the parameters for St,j are identical for all firms Aj , that is, when

S0,j = S0, µj = µ, σj = σ, and ρS,j = ρS for all firms A1, . . . ,AJ (4.34)

so that the stock prices St,1, St,2, . . . , St,J become exchangeable. Furthermore, by
letting wj = 1 for all companies, we get an equally value-weighted portfolio as in
Definition 4.7, and (4.34) together with Theorem 4.8 then imply that the mappings
ΨV

k (x, t, µ, σ, S0, ρS , η) in the loss distribution P
[
L∆V
t ≤ x

]
given by (4.18) will

simplify a bit, where for k ≥ 1 under (4.34), we get

ΨV
k (x, t, µ, σ, S0, ρS , η) =

∫ ∞

0

Φ

(
y − x

S0
− J

(
µ− 1

2σ
2
)
t

σ
√
tJ (1 + (J − 1) ρ2S)

)
ηe−ηy (ηy)

Jk−1

(Jk − 1)!
dy

(4.35)
and for k = 0 with condition (4.34), the mapping ΨV

0 (x, t, µ, σ, S0, ρS , η) is simpli-
fied to

ΨV
0 (x, t, µ, σ, S0, ρS , η) = Φ

(
− x

S0
− J

(
µ− 1

2σ
2
)
t

σ
√
tJ (1 + (J − 1) ρ2S)

)
(4.36)

where the rest of the notation is same as in Theorem 4.8.

Given formulas (4.18)-(4.20) in Theorem 4.8 for the distribution FL∆V
t

(x) =

P
[
L∆V
t ≤ x

]
where L∆V

t is the linear approximation to the portfolio loss L
(V )
t , we

can find the Value-at-Risk for L∆V
t with confidence level α, denoted by VaRα

(
L∆V
t

)
,

as

VaRα

(
L∆V
t

)
= F−1

L∆V
t

(α) so that FL∆V
t

(
VaRα

(
L∆V
t

))
= α (4.37)

since L∆V
t is a continuous random variable. Equation (4.37) can for most credit

portfolio models only be solved numerically. Also, note that VaRα

(
L∆V
t

)
will for
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small time points t be an approximation to VaRα

(
L
(V )
t

)
as defined in (4.10), that

is

VaRα

(
L∆V
t

)
≈ VaRα

(
L
(V )
t

)
so F−1

L∆V
t

(α) ≈ F−1

L
(V )
t

(α) for small time points t.

(4.38)
Just as in Theorem 2.14, we again remark that the formulas in Theorem 4.8 and
related computations as in (4.37) require efficient and quick methods of computing

the number of the default distribution P
[
N

(m)
t = k

]
.

In our numerical studies in Sections 7 - 8, we will use the results in Theorem

4.8 together with efficient numerical methods for computing P
[
N

(m)
t = k

]
in an

intensity-based CIR model, and also in a one-factor Gaussian copula model.

Remark 4.10. In the case when there is no jump at the defaults in Definition 4.1,

i.e. when Un = 0 for all n, then St,j = S
(BS)
t,j for all companies Aj with S

(BS)
t,j given

by

S
(BS)
t,j = S0,j exp

((
µj −

1

2
σ2
j

)
t+ σj

(
ρS,jWt,0 +

√
1− ρ2S,jWt,j

))
(4.39)

where Wt,0,Wt,1, . . . ,Wt,J are J + 1 independent Brownian motions, and the rest

of the notation is the same as in Definition 4.1. Note that S
(BS)
t,1 , . . . , S

(BS)
t,J under

(4.39) will still be correlated via the factor process Wt,0, and recall that ρSWt,0 +√
1− ρ2SWt,j is a Brownian motion for each stock price S

(BS)
t,j .

In view of Remark 4.10, we now state the following corollary to Theorem 4.8 in
the case where there are no jumps among the stock prices St,j .

Corollary 4.11. Consider an equally value-weighted portfolio as in Definition 4.7

where the J stock prices S
(BS)
t,1 , . . . , S

(BS)
t,J are defined as in (4.39) under the real

probability measure P. Then, with notation as above,

P
[
L∆V
t ≤ x

]
= Φ


x
S0

+
∑J

j=1

(
µj − 1

2σ
2
j

)
t√

t

((∑J
j=1 σjρS,j

)2
+
∑J

j=1 σ
2
j

(
1− ρ2S,j

))
 (4.40)

and

VaRα

(
L∆V
t

)

= S0


√√√√√√t


 J∑

j=1

σjρS,j

2

+

J∑
j=1

σ2
j

(
1− ρ2S,j

)Φ−1 (α)−
J∑

j=1

(
µj −

1

2
σ2
j

)
t


(4.41)

where Φ (x) is the distribution function to a standard normal random variable. Fur-

thermore, if the stock prices S
(BS)
t,1 , . . . , S

(BS)
t,J also satisfy (4.34) in Remark 4.9, then

(4.40)-(4.41) simplify to

P
[
L∆V
t ≤ x

]
= Φ

(
x
S0

+ J
(
µ− 1

2σ
2
)
t

σ
√
tJ (1 + (J − 1) ρ2S)

)
(4.42)
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and

VaRα

(
L∆V
t

)
= S0

(
σ
√
tJ (1 + (J − 1) ρ2S)Φ

−1 (α)− J

(
µ− 1

2
σ2

)
t

)
. (4.43)

A proof of Corollary 4.11 is given in Subsection A.3 of Appendix A.
In our numerical studies in Section 7 and 8, we will use the “Black-Scholes”

linear portfolio formulas in Corollary 4.11 as a benchmark for expressions of the
stock prices with jumps at defaults given in Theorem 4.8.

The results in Theorem 4.8 and Corollary 4.11 hold for heterogeneous stock
portfolios which are equally value-weighted and have arbitrary size J , that is, the
number of stocks J in the portfolio can be small or large. The main drawback
with the formulas in Theorem 4.8 and Corollary 4.11 is that these expressions for
the linearized loss L∆V

t only work somewhat accurately as an approximation of

the true loss L
(V )
t when the time t is small, and the expressions will fail as time t

starts to increase. For example, the linearized loss L∆V
t may produce VaR-values

that are bigger than V0, which is impossible since, by construction, it will hold

that L
(V )
t ≤ V0 almost surely for all t ≥ 0 under the real probability measure P.

However, in certain cases we can still find highly analytical approximation formulas

for the loss distribution P
[
L
(V )
t ≤ x

]
at any time point t and where the loss will

never exceed V0, as will be seen in the next section.

5. The multidimensional case: Approximation formulas to loss distribu-
tions for large homogeneous stock portfolios with jumps at exogenous
defaults. For larger time points t, the linear approximations to the stock portfolio
in Theorem 4.8 and Corollary 4.11 will fail. If we however assume that the stock
prices St,j satisfy (4.34) in Remark 4.9, that is, S0,j = S0, µj = µ, σj = σ, and
ρS,j = ρS for all firms A1, . . . ,AJ so that the St,1, St,2, . . . , St,J are exchangeable
and the portfolio becomes homogeneous (given same weights), and if the number of
stocks J in the portfolio are “large”, then we will in this section derive approxima-

tion formulas for the loss distribution P
[
L
(V )
t ≤ x

]
, which will work for arbitrary

time points t, that is, both for large and small time points t, and which will also
guarantee that portfolio loss will always be smaller than V0 almost surely for all
t ≥ 0 under the measure P. Hence, in this section we will make two assumptions.
First, we assume that (4.34) holds together with Definition 4.1 under the real prob-
ability measure P, with equal portfolio weights wj for all companies A1, . . . ,AJ in
the portfolio Vt. Our second assumption is that the number of stocks J in the port-
folio are “large”. Since the stock portfolio is equally weighted and we are primarily
interested in Value-at-Risk calculation of the portfolio, then due to the linearity of
VaR we can without loss of generality let wj = 1 for each stock in the portfolio,

and thus define the portfolio value as Vt =
∑J

j=1 St,j . Due to condition (4.34), the
portfolio Vt will then be an equally value-weighted portfolio as in Definition 4.7.

Remark 5.1. Homogenization of a heterogeneous stock portfolio: Assum-
ing a completely homogeneous stock portfolio so that the parameters for each stock
are the same is of course an unrealistic feature. Consider a heterogeneous stock port-
folio with stocks defined as in Definition 4.1, portfolio value V̂t, and define S0, µ, σ,
and ρS as the corresponding sample means of the parameters in this portfolio, that
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is,

S0 =
1

J

J∑
j=1

S0,j µ =
1

J

J∑
j=1

µj σ =
1

J

J∑
j=1

σj and ρS =
1

J

J∑
j=1

ρS,j . (5.1)

Next, create a homogeneous stock portfolio as in Section 4 with parameters S0, µ, σ,

and ρS as in (5.1) with portfolio value Vt, and where Wt,0,Wt,1, . . . ,Wt,J , N
(m)
t ,

and Ui,j are the same as in the heterogeneous portfolio. For such homogeneous

portfolios, [30] as well as [38] proved that the value process V̂t for a large hetero-
geneous stock portfolio can be approximated arbitrarily well by Vt in the L1-sense
as J → ∞. [30] proved the result for portfolios with only diffusions while [38]
extended the proof to the case where the stocks can also jump due to Poisson pro-
cesses. In view of the results of [30] and [38], it is therefore still relevant to consider
homogeneous stock portfolios in particular if these portfolios come from doing a
homogenization of a heterogeneous stock portfolio as in (5.1).

Given the assumption that (4.34) is satisfied, we now state the following theorem.

Theorem 5.2. Let St,1, . . . , St,J be stock prices defined as in Definition 4.1, which
satisfies (4.34) under the real probability measure P. Then, with notation as above,
we have

lim
J→∞

1

J

J∑
j=1

St,j = S0 exp

((
µ− 1

2
σ2ρ2S

)
t+ σρSWt,0

)(
η

η + 1

)N
(m)
t

(5.2)

almost surely under the probability measure P
[
· |Wt,0, N

(m)
t

]
and

lim
J→∞

P

 1

J

J∑
j=1

St,j ≤ x



= P

S0 exp

((
µ− 1

2
σ2ρ2S

)
t+ σρSWt,0

)(
η

η + 1

)N
(m)
t

≤ x

 . (5.3)

Furthermore, for large J we have

P
[
L
(V )
t ≤ x

]

≈ P

JS0

1− exp

((
µ− 1

2
σ2ρ2S

)
t+ σρSWt,0

)(
η

η + 1

)N
(m)
t

 ≤ x

 (5.4)

and if ρS ̸= 0, then for x ≤ JS0 = V0, it holds for large J that

P
[
L
(V )
t ≤ x

]

≈ 1−
m∑

k=0

Φ

 ln

((
1− x

JS0

)(
η+1
η

)k)
−
(
µ− 1

2σ
2ρ2S
)
t

σρS
√
t

P
[
N

(m)
t = k

]
(5.5)

where Φ (x) is the distribution function of a standard normal random variable.
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Proof. From the construction in Definition 4.1, we know that Wt,0,Wt,1, . . . ,Wt,J

are J + 1 independent Brownian motions, and that for each j the jump terms
U1,j , . . . , Um,j are also independent of the processesWt,0,Wt,1, . . . ,Wt,J and the de-

fault counting processN
(m)
t . Hence, for a fixed t, conditional on the pairWt,0, N

(m)
t ,

then St,1, . . . , St,J will be an i.i.d sequence, and therefore a conditional version of
the law of large numbers implies that

lim
J→∞

1

J

J∑
j=1

St,j = E
[
St,j |Wt,0, N

(m)
t

]
a.s. under P

[
· |Wt,0, N

(m)
t

]
(5.6)

where the subindex j in E
[
St,j |Wt,0, N

(m)
t

]
on the right-hand side of (5.6) could be

any positive integer due to the exchangeability of St,1, . . . , St,J . Next, by Definition
4.1 together with (4.34), we have that

E
[
St,j |Wt,0, N

(m)
t

]

= E

S0 exp

(µ−
1

2
σ2

)
t+ σ

(
ρSWt,0 +

√
1− ρ2SWt,j

)
−

N
(m)
t∑

n=1

Un,j


∣∣∣∣∣∣∣Wt,0, N

(m)
t



= S0 exp

((
µ−

1

2
σ2

)
t+ σρSWt,0

)
E

 exp

σ
√

1− ρ2SWt,j −
N

(m)
t∑

n=1

Un,j


∣∣∣∣∣∣∣Wt,0, N

(m)
t

 .

(5.7)

Furthermore,

E

exp
σ√1− ρ2SWt,j −

N
(m)
t∑

n=1

Un,j

∣∣∣∣∣∣Wt,0, N
(m)
t



= exp

(
σ2
(
1− ρ2S

)
t

2

)
E

exp
−

N
(m)
t∑

n=1

Un,j

∣∣∣∣∣∣N (m)
t


(5.8)

since

E

 exp

σ
√

1− ρ2SWt,j −
N

(m)
t∑

n=1

Un,j


∣∣∣∣∣∣∣Wt,0, N

(m)
t


= E

E

 exp

σ
√

1− ρ2SWt,j −
N

(m)
t∑

n=1

Un,j


∣∣∣∣∣∣∣Wt,0, N

(m)
t , {Un,j}mn=1


∣∣∣∣∣∣∣Wt,0, N

(m)
t


= E

 exp

−
N

(m)
t∑

n=1

Un,j

E
[
exp

(
σ
√

1− ρ2SWt,j

) ∣∣∣∣Wt,0, N
(m)
t , {Un,j}mn=1

] ∣∣∣∣∣∣∣Wt,0, N
(m)
t


= E

[
exp

(
σ
√

1− ρ2SWt,j

)]
E

 exp

−
N

(m)
t∑

n=1

Un,j


∣∣∣∣∣∣∣Wt,0, N

(m)
t


= exp

(
σ2
(
1− ρ2S

)
t

2

)
E

 exp

−
N

(m)
t∑

n=1

Un,j


∣∣∣∣∣∣∣N(m)

t

 (5.9)
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where the third equality in (5.9) follows from the fact that Wt,j is independent of

Wt,0, N
(m)
t , {Un,j}mn=1, and the fourth equality in (5.9) is due to that

∑N
(m)
t

n=1 Un,j is
independent of Wt,0, see e.g. 9.7(k) on p.88 in [52], and due to standard computa-

tions of E
[
exp

(
σ
√

1− ρ2SWt,j

)]
, which proves (5.8). Next, note that

E

exp
−

N
(m)
t∑

n=1

Un,j

∣∣∣∣∣∣N (m)
t

 =

(
η

η + 1

)N
(m)
t

(5.10)

since

E

exp
−

N
(m)
t∑

n=1

Un,j

∣∣∣∣∣∣N (m)
t


=

m∑
k=0

E

[
exp

(
−

k∑
n=1

Un,j

)∣∣∣∣∣N (m)
t = k

]
1{

N
(m)
t =k

}

=

m∑
k=0

E

[
exp

(
−

k∑
n=1

Un,j

)]
1{

N
(m)
t =k

}

=

m∑
k=0

(
η

η + 1

)k

1{
N

(m)
t =k

}

=

(
η

η + 1

)N
(m)
t

(5.11)

where the second equality in (5.11) is due to that {Un,j}mn=1 are independent of

N
(m)
t , and the third equality in (5.11) follows from (A.2.27) in Theorem 2.14. So,

combining (5.7), (5.8), and (5.10) together with some computations then renders
that

E
[
St,j |Wt,0, N

(m)
t

]
= S0 exp

((
µ− 1

2
σ2ρ2S

)
t+ σρSWt,0

)(
η

η + 1

)N
(m)
t

(5.12)

and (5.12) in (5.6) finally implies

lim
J→∞

1

J

J∑
j=1

St,j

= S0 exp

((
µ− 1

2
σ2ρ2S

)
t+ σρSWt,0

)(
η

η + 1

)N
(m)
t

a.s. under P
[
· |Wt,0, N

(m)
t

]
(5.13)

which proves (5.2). The random measure P
[
· |Wt,0, N

(m)
t

]
is constructed from

the probability measure P used in this paper, and in particular Definition 4.1,

so (5.13) then implies that 1
J

∑J
j=1 St,j converges weakly (i.e in distribution) to

S0 exp
((
µ− 1

2σ
2ρ2S
)
t+ σρSWt,0

)
under the probability measure P when J → ∞.

To see this, note that

P

 1

J

J∑
j=1

St,j ≤ x

 = E

P
 1

J

J∑
j=1

St,j ≤ x

∣∣∣∣∣∣Wt,0, N
(m)
t

 (5.14)
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and (5.13) imply that

P

 1

J

J∑
j=1

St,j ≤ x

∣∣∣∣∣∣Wt,0, N
(m)
t


→ P

S0 exp

((
µ− 1

2
σ2ρ2S

)
t+ σρSWt,0

)(
η

η + 1

)N
(m)
t

≤ x

∣∣∣∣∣∣Wt,0, N
(m)
t


(5.15)

as J → ∞. Hence, (5.14)-(5.15) together with the law of iterated expectations then
renders

P

 1

J

J∑
j=1

St,j ≤ x


→ P

S0 exp

((
µ− 1

2
σ2ρ2S

)
t+ σρSWt,0

)(
η

η + 1

)N
(m)
t

≤ x

 as J → ∞

(5.16)

which proves (5.3). Thus, if J is large, then (5.16) implies that

J∑
j=1

St,j
d
≈
∣∣∣
P
JS0 exp

((
µ− 1

2
σ2ρ2S

)
t+ σρSWt,0

)(
η

η + 1

)N
(m)
t

for large J

(5.17)

where
d
≈
∣∣∣
P
means “approximately equal in distribution under the probability mea-

sure P. Next, from the definition of the portfolio value Vt in (4.6) and the portfolio

loss process L
(V )
t in (4.9) together with the fact that St,0 = S0 for all stocks due to

condition (4.34), we get that

L
(V )
t = V0 − Vt =

J∑
j=1

St,0 −
J∑

j=1

St,j = JS0 −
J∑

j=1

St,j (5.18)

so (5.17) and (5.18) with some simple calculations then imply that

P
[
L

(V )
t ≤ x

]
≈ P

JS0

1− exp

((
µ− 1

2
σ2ρ2S

)
t+ σρSWt,0

)(
η

η + 1

)N
(m)
t

 ≤ x

 for large J

(5.19)

which proves (5.4).
Next, we want to find an more explicit expression of the right-hand side of (5.19).

First, we note that

P

JS0

1− exp

((
µ− 1

2
σ2ρ2S

)
t+ σρSWt,0

)(
η

η + 1

)N
(m)
t

 ≤ x


=

m∑
k=0

P

[
JS0

(
1− exp

((
µ− 1

2
σ2ρ2S

)
t+ σρSWt,0

)(
η

η + 1

)k
)

≤ x

∣∣∣∣∣N (m)
t = k

]
× P

[
N

(m)
t = k

]
. (5.20)
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Since Wt,0 is independent of N
(m)
t , we get

P

[
JS0

(
1− exp

((
µ− 1

2
σ2ρ2S

)
t+ σρSWt,0

)(
η

η + 1

)k
)

≤ x

∣∣∣∣∣N (m)
t = k

]

= P

[
JS0

(
1− exp

((
µ− 1

2
σ2ρ2S

)
t+ σρSWt,0

)(
η

η + 1

)k
)

≤ x

]
(5.21)

and assuming ρS ̸= 0, some calculations then render that

P

[
JS0

(
1− exp

((
µ− 1

2
σ2ρ2S

)
t+ σρSWt,0

)(
η

η + 1

)k
)

≤ x

]

= 1− Φ

 ln

((
1− x

JS0

)(
η+1
η

)k)
−
(
µ− 1

2σ
2ρ2S
)
t

σρS
√
t


(5.22)

where Φ (x) is the distribution function of a standard normal random variable. So,
combining (5.20)-(5.22) and inserting these expressions into (5.19) finally yields

P
[
L

(V )
t ≤ x

]

≈ 1−
m∑

k=0

Φ

 ln

((
1− x

JS0

)(
η+1
η

)k)
−
(
µ− 1

2
σ2ρ2S

)
t

σρS
√
t

P
[
N

(m)
t = k

]
for large J

which proves (5.5), and this concludes the theorem.

Next, we make some remarks on the results in Theorem 5.2.

Remark 5.3. First, we note from (5.2) in Theorem 5.2 that, when conditioning on

Wt,0, N
(m)
t and then studying the limit of 1

J

∑J
j=1 St,j when J → ∞, we see that the

individual diffusions Wt,j as well as the individual jump terms Un,j vanish. Only

the effect of Wt,0 and N
(m)
t remains in the limit of 1

J

∑J
j=1 St,j on a simple form as

stated in Equation (5.2). Second, if ρS = 0, meaning that there is no correlation
through the factor process Wt,0 in the diffusion part among the stocks, then (5.2)
collapses into

lim
J→∞

1

J

J∑
j=1

St,j = S0e
µt

(
η

η + 1

)N
(m)
t

a.s. under P
[
· |N (m)

t

]
(5.23)

where the right-hand side of (5.23) is a piecewise deterministic process with jumps
at the default times τ1, . . . , τm. If “η = ∞” so that Un,j = 0 for all pairs n, j (see
also Remark 2.11), and if ρS = 0, then (5.23) reduces to the “standard” law of
large numbers under the measure P since Remark 4.10 with ρS = 0 implies that

St,j = S
(BS)
t,j for all companies Aj , and St,1, . . . , St,J will be an i.i.d sequence. This

observation together with Equation (2.26) gives E
[
S
(BS)
t,j

]
= S0e

µt which is the

right-hand side of (5.23) without the point process N
(m)
t , since Un,j = 0 for all n
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and j, that is,

lim
J→∞

1

J

J∑
j=1

St,j = S0e
µt P -a.s.

and this is just the (strong) law of large numbers under the measure P since
St,1, . . . , St,J is an i.i.d sequence.

For ρS ̸= 0, define F LPA

L
(V )
t

(x) as

F LPA

L
(V )
t

(x) = 1−
m∑

k=0

Φ

 ln

((
1− x

JS0

)(
η+1
η

)k)
−
(
µ− 1

2σ
2ρ2S
)
t

σρS
√
t

P
[
N

(m)
t = k

]
.

(5.24)
Then, if ρS ̸= 0, the large portfolio approximation formula (5.5) in Theorem 5.2
implies that

P
[
L
(V )
t ≤ x

]
≈ F LPA

L
(V )
t

(x) for large J . (5.25)

Note that F LPA

L
(V )
t

(x) in (5.24) is exactly equal to the right-hand side of (5.4). From

the probability in the right hand side of (5.4), it is clear that this probability will
be one for x > V0 = JS0, and then F LPA

L
(V )
t

(x) = 1 for x > V0 = JS0. To see this,

note that for each k we have that

ln

((
1− x

JS0

)(
η + 1

η

)k
)

→ −∞ as x ↑ JS0 = V0 .

so for each k we get

lim
x↑JS0

Φ

 ln

((
1− x

JS0

)(
η+1
η

)k)
−
(
µ− 1

2σ
2ρ2S
)
t

σρS
√
t

 = 0

and this observation in (5.24) implies that

lim
x↑JS0

F LPA

L
(V )
t

(x) = 1 . (5.26)

Hence, in view of (5.24) and (5.26), the distribution F LPA

L
(V )
t

(x) is only defined for

x ≤ V0 = JS0. Consequently, our LPA approximation formula in (5.25) implies
that F LPA

L
(V )
t

(x) = 1 for x > V0 = JS0, that is, for any time point t, the loss will never

be bigger than V0, which is financially correct given our model setup, while the
distribution for the linearized portfolio loss L∆V

t discussed in Section 4 can produce
losses bigger than V0 = JS0 when t increases.

Here, we note that the distribution function F LPA

L
(V )
t

(x) defined in (5.24) and used

on the the right-hand side of (5.5) in Theorem 5.2 will be much easier to evaluate
than the corresponding distribution for the “small time” linear approximation L∆V

t

to L
(V )
t , where P

[
L∆V
t ≤ x

]
is given by (4.18) in Theorem 4.8. More specifically,

the expression for P
[
L∆V
t ≤ x

]
in (4.18) will for each k ≥ 1 in the sum involve

computations of an integral given by (4.19) in Theorem 4.8, while the correspond-
ing terms in the sum for F LPA

L
(V )
t

(x) in (5.24) simply involves an evaluation of the

distribution function to a standard normal random variable for each k in the sum.
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However, we remind that P
[
L∆V
t ≤ x

]
works for heterogeneous stock portfolios with

an arbitrary number of stocks J , in particular smaller J , while the approximation of

P
[
L
(V )
t ≤ x

]
via F LPA

L
(V )
t

(x) in (5.25) is only feasible for large stock portfolio sizes J .

On the other hand, F LPA

L
(V )
t

(x) works for arbitrary time points t, while P
[
L∆V
t ≤ x

]
is only a good approximation to P

[
L
(V )
t ≤ x

]
for small time points t.

Let VaRα

(
L
(V )
t

)
defined as in (4.10) be the Value-at-Risk for the stock portfo-

lio loss L
(V )
t with confidence level α. By using the large portfolio approximation

formula (5.5) in Theorem 5.2, that is, relation (5.25), we can for large J find an

approximation to VaRα

(
L
(V )
t

)
which then is given as the unique solution x∗ to the

equation F LPA

L
(V )
t

(x∗) = α, that is

VaRα

(
L
(V )
t

)
≈ (F−1)LPA

L
(V )
t

(α) for large J (5.27)

where (F−1)LPA

L
(V )
t

(x) denotes the inverse function to the function F LPA

L
(V )
t

(x) defined in

(5.24). Since F LPA

L
(V )
t

(x) = 1 for x > V0 = JS0, we see that (5.27) can never produce

a VaR value bigger than V0, contrary to the linearized portfolio loss VaR-values.
Just as in Theorem 2.14 and Theorem 4.8, we once again remark that the formula

in (5.5) in Theorem 5.2 and computations as in (5.27) require efficient and quick

methods of computing the number of default distribution P
[
N

(m)
t = k

]
.

In the case when there are no jumps in the stock prices at the defaults of the
exogenous group of defaultable entities in Definition 4.1, i.e. when “η = ∞” so

that Un,j = 0 for all pairs n, j (see also Remark 2.11), and thus St,j = S
(BS)
t,j for all

companies Aj where S
(BS)
t,j is given by (4.39) in Remark 4.10, and if ρS ̸= 0, then

(5.2) in Theorem 5.2 will reduce to

lim
J→∞

1

J

J∑
j=1

St,j =S0 exp

((
µ− 1

2
σ2ρ2S

)
t+ σρSWt,0

)
a.s. under P [ · |Wt,0] .

(5.28)

Hence, from (5.28) and using the same arguments as in Theorem 5.2, we then have
that

P
[
L
(V )
t ≤ x

]
≈ P

[
JS0

(
1− exp

((
µ− 1

2
σ2ρ2S

)
t+ σρSWt,0

))
≤ x

]
for large J . (5.29)

We also note that the right-hand side of (5.28) is of the exact same form as the stock

price S
(BS)
t in the Black-Scholes model for a single stock, under the real probability

measure P given in (2.25), but now with the volatility σρS instead of σ as in (2.25).

Hence, for large J , the loss process L
(V )
t will for the case when Un,j = 0 for all

n, j behave as the loss process for one single stock which follows the Black-Scholes
dynamics with volatility σρS , drift µ, and initial value JS0. From Equation (2.34)
in Section 2 together with the large portfolio approximation in (5.29), in the case
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with no jumps in the stock price, we therefore get that

VaRα

(
L
(V )
t

)
≈ JS0

(
1− exp

(
σρS

√
tΦ−1 (1− α) +

(
µ− 1

2
σ2ρ2S

)
t

))
for large J . (5.30)

In our numerical studies in Section 7 and 8, we will use the “Black-Scholes” LPA
VaR formula in (5.30) as a benchmark for the VaR formulas obtained when using
the LPA loss distribution (5.5) in Theorem 5.2 when the stock prices have jumps
and are exchangeable.

6. Comparison against Kou model with only negative jumps. In Sections
4 and 5, we considered the case where the jumps in the stock prices where triggered
by default from an exogenous group of m entities C1, . . . ,Cm. In our numerical
studies, we will use the stock price models from Sections 4 and 5 to compute VaR for
stock portfolios and compare these VaR-numbers with corresponding values coming
from an equity model without jumps, that is, a Black-Scholes portfolio setting under
the real probability measure. However, comparing our jump-at-default model only
with a non-jump model will in our view not be fully fair. We believe it is equally
important to compare our stock price model containing jumps at defaults with
other equity models that include jumps in the stock price driven by, e.g., a Poisson
process. We will therefore in this section briefly outline some important quantities
derived from the Kou model, [32], restricted to only having negative jumps. These
quantities will then be used in Section 10 when comparing VaR-values coming from
our jump-at-defaults model in Section 5 with VaR-quantities from the Kou model
having only negative jumps which are driven by a Poisson process outlined in this
section.

Let S
(κ)
t,j be the stock price in Definition 4.1, but where the default counting

process N
(m)
t is replaced by a Poisson process Nt with intensity λκ > 0, so that

S
(κ)
t,j is given by

S
(κ)
t,j = S0,j exp

((
µj −

1

2
σ2
j

)
t+ σj

(
ρS,jWt,0 +

√
1− ρ2S,jWt,j

)
−

Nt∑
n=1

Un,j

)
(6.1)

and where the rest of the terms in (6.1) are the same as in Definition 4.1. The stock

prices S
(κ)
t,j in (6.1) will be same as in [32], but here with only negative jumps, and

where we extend [32] to a portfolio setting so that the S
(κ)
t,j are correlated via the

factor process Wt,0 and the Poisson process Nt. Next, we define V
(κ)
t and LV,κ

t as

V
(κ)
t =

J∑
j=1

wjS
(κ)
t,j and LV,κ

t = −
(
V

(κ)
t − V

(κ)
0

)
(6.2)

Given the two stock portfolio frameworks S
(κ)
t,j modeled as in (6.1) and St,j given

by Definition 4.1, it is interesting to compare these two models. To this end, we
first state the following corollary to Theorem 2.14.
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Corollary 6.1. Let S
(κ)
t,j be a stock price under the real probability measure P defined

as in (6.1). Then, with notation as above, we have that

E
[
S
(κ)
t,j

∣∣∣Nt

]
= S0,je

µjt

(
ηκ

ηκ + 1

)Nt

where

E
[
S
(κ)
t

∣∣∣Nt = k
]
= S0,je

µjt

(
ηκ

ηκ + 1

)k

(6.3)

for k = 0, 1, 2, . . . ,m and

E
[
S
(κ)
t,j

]
= S0,j exp

((
µj −

λκ
ηκ + 1

)
t

)
. (6.4)

Furthermore, if the stock portfolio is homogeneous so that condition (4.34) is satis-
fied with the weights wj = 1 in (6.2), then for large J we have that

P
[
LV,κ
t ≤ x

]

≈ 1−
∞∑
k=0

e−λκt
(λκt)

k

k!
Φ

 ln

((
1− x

JS0

)(
ηκ+1
ηκ

)k)
−
(
µ− 1

2σ
2ρ2S
)
t

σρS
√
t

 (6.5)

where the rest of the notation in (6.5) is same as in Theorem 5.2.

A proof of Corollary 6.1 is given in Subsection A.4 of Appendix A.
In Sections 7, 8, and 9, we will later compare the stock portfolio VaR in the model

with jumps at defaults given by Definition 4.1 with the corresponding Black-Scholes
portfolio model without jumps. But, we will also benchmark our model with the

model in [32] with only negative jumps, that is, the model S
(κ)
t,j given by (6.1), see

Section 10. For the comparison of St,j in Definition 4.1 with the Kou model, [32],
we will consider a homogeneous stock portfolio so that condition (4.34) is satisfied,
that is, S0,j = S0, µj = µ, σj = µ, and ρS,j = ρS for all firms A1, . . . ,AJ so that

the stock prices S
(κ)
t,1 , S

(κ)
t,2 , . . . , S

(κ)
t,J become exchangeable. Now, assume that we

want to calibrate the parameters λκ and ηκ in the model for S
(κ)
t,j given by (6.1).

There are several different ways of calibrating λκ and ηκ. If we want to compare the

two models S
(κ)
t,j and St,j , then we can, for example, assume that for two arbitrary

fixed time points T and T̃ , it will hold that

E
[
S
(κ)
T,j

]
= S0 = E [ST,j ] and E [NT̃ ] = E

[
N

(m)

T̃

]
(6.6)

where we remark that it is possible to let T̃ = T . Note that the condition E
[
S
(κ)
T,j

]
=

S0 implies, just as in (2.32), that the downward jumps in the Kou model S
(κ)
t at

the jump times of the Poisson process Nt “wipe” out the expected log-growth for
a corresponding Black-Scholes model with drift µ up to time T ; see also Equation

(6.4). Furthermore, we observe that E [NT̃ ] = E
[
N

(m)

T̃

]
means that the expected

number of jumps by the point processes Nt and N
(m)
t will be the same up to time

T̃ , which for N
(m)
t is the same as saying that the expected number of defaults in the

group C1, . . . ,Cm will be given by E [NT̃ ] = λκT̃ . If the default times τ1, τ2 . . . , τm
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for C1, . . . ,Cm are exchangeable with default distribution F (t) = P [τi ≤ t], then

the condition E [NT̃ ] = E
[
N

(m)

T̃

]
can be reformulated as

λκT̃ = mF (T̃ ) . (6.7)

For St,j in Definition 4.1 under condition (4.34), and from (2.32), we see that the

condition E
[
S
(κ)
T

]
= S0 gives a non-linear equation for finding the jump parameter

ηκ, and in a similar way we can use (6.4) in Corollary 6.1 to conclude that

E
[
S
(κ)
T,j

]
= S0 if and only if exp

((
µ− λκ

ηκ + 1

)
T

)
= 1

and thus
λκ

ηκ + 1
= µ . (6.8)

Hence, in view of (6.7) and (6.8), condition (6.6) in an exchangeable credit portfolio
model for the default times τ1, τ2 . . . , τm to C1, . . . ,Cm can then be reformulated
as

λκT̃ = mF (T̃ ) and
λκ

ηκ + 1
= µ . (6.9)

If µ is known, and if the parameters of the default distribution F (t) = P [τi ≤ t]
also are known, then condition (6.6), or equivalently (6.9), will give us two unknown
parameters, λκ and ηκ, and two equations, which often will lead to semi-explicit
or explicit solutions for λκ and ηκ. For example, if the exchangeable default times
τ1, τ2 . . . , τm have constant default intensity λ so that F (t) = P [τi ≤ t] = 1− e−λt,
then (6.9) implies that λκ and ηκ are given by

λκ =
m
(
1− e−λT̃

)
T̃

and ηκ =
λκ
µ

− 1 . (6.10)

So, λκ and ηκ in (6.10) are thus equivalent with the conditions in (6.6) which are
financially and intuitively clear. In Section 10, we will use λκ and ηκ in (6.10) when
computing and comparing VaR-values coming from our jump-at-defaults model in
Section 5 with VaR-quantities from the Kou model in (6.1) having only negative
jumps which are exponentially distributed with parameter ηκ where the jumps are
driven by a Poisson process with intensity λκ. Note that condition (6.10) is inde-
pendent of what type of credit portfolio model we use for the default times as long
as F (t) = P [τi ≤ t] = 1− e−λt for all default times.

7. Numerical examples when the default times have CIR intensities. In

this section we will study Value-at-Risk for the loss L
(S)
t = − (St − S0) for one single

stock when the stock price St is given by Definition 2.1 under the real probability
measure P. Throughout this section we assume that the default times τ1, τ2 . . . , τm
to the entities C1, . . . ,Cm are exchangeable, conditional independent, and have
default intensities λt,i = λt the same for all entities where λt is a CIR-process.

Furthermore, the jumps Ṽ1, . . . , Ṽm in St at the defaults τ1, τ2 . . . , τm are distributed
as V1, . . . , Vm in Definition 2.10. In Subsection 7.1, we first motivate the rationale of
the numerical values for the parameters, and also study other related quantizes such
as the number of defaults distribution for the group of defaultable entities. Then, in
Subsection 7.2 we study Value-at-Risk for the loss of one individual stock with price
under the real probability measure P in a credit portfolio model with parameters as
discussed in Subsection 7.1. Finally, in Subsection 7.3 we give some very important
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and useful remarks on the numerical computation of the loss distribution. The
observations done in Subsection 7.3 will also hold for the loss distributions derived
in Section 4 and Section 5, and for the credit portfolio model studies in Section 8.

7.1. The parameters and related quantities. In this subsection, we discuss
the modeling setup and its parameters that will hold in the rest of the section,
and present some related quantities such as, e.g., the distribution of the number of

defaults
(
P
[
N

(m)
t = k

])m
k=0

for our model.

As mentioned in Section 1, in this paper we will not focus on how to estimate
the involved parameters describing the stock model, including the parameters for
the defaultable entities affecting the equity prices. Instead, the main goal of this
paper is to derive analytical stock portfolio quantities in our equity-credit hybrid
model, and then use these to numerically study the time evolution of VaR for equity
portfolios and compare the VaR-numbers with corresponding values coming from
alternative models, such as the Kou model and the Black-Scholes model. However,
in this subsection we will motivate the rationale behind the choice of the stock price
parameters µ, σ, and the one-year default probability for the defaultable entities
connected to the default intensity parameters. Since the numerical values of µ, σ,
and the one-year default probability will also be used in Sections 8 - 10, we will
then simply refer to this subsection for motivation of the choice of the parameters
µ, σ, and the one-year default probability.

In the rest of this section, we assume that the default times τ1, τ2 . . . , τm to the
entities C1, . . . ,Cm are exchangeable, conditionally independent, and have default
intensities λt,i = λt the same for all entities. We set λt = λt,i to be a Cox-Ingersoll-
Ross process (CIR-process), that is,

dλt = ac (µc − λt) dt+ σc
√
λtdW

(c)
t (7.1.1)

where W
(c)
t is a Brownian motion under the physical probability measure P, inde-

pendent of the other random variables in St. Then, the default times τ1, . . . , τm are
constructed as

τi = inf

{
t > 0 :

∫ t

0

λsds ≥ Ei

}
(7.1.2)

where E1, . . . , Em is an i.i.d sequence of exponentially distributed random vari-

ables all with parameter one which are independent ofW
(c)
t . From the construction

(7.1.2), one can show that τ1, . . . , τm are conditionally independent given the trajec-

tory of (W
(c)
t )t≥0. Furthermore, the marginal default distribution F (t) = P [τi ≤ t]

is expressed as

F (t) = P [τi ≤ t] = 1− E
[
e−

∫ t
0
λs ds

]
(7.1.3)

and is the same for all entities C1, . . . ,Cm due to the exchangeability, where the

quantity E
[
e−

∫ t
0
λs ds

]
has closed formulas; see e.g. [5] or [25]. The construction

in (7.1.2)-(7.1.3) can be applied to arbitrary intensities λt, and thus not only to a
CIR-process. From a practical point of view, we want to have analytical expressions
of the default distribution F (t) in (7.1.3). Another example of intensity which gives
analytical formulas for F (t) is a shot-noise model as presented in, e.g., [26]. The
construction in (7.1.2)-(7.1.3) will also work for heterogeneous credit portfolios, that
is, when the intensities λi,t are different among the entities C1, . . . ,Cm.

Going back to our stock price model for St, we let the jumps Ṽ1, . . . , Ṽm in St

at the defaults τ1, τ2 . . . , τm be distributed as V1, . . . , Vm in Definition 2.10, so Ṽi =
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e−Ũi − 1 where Ũ1, . . . , Ũm are i.i.d and exponentially distributed with parameter
η > 0. Hence, given the above assumptions, the dynamics of the stock price St

is the same as in Corollary 2.13 and Theorem 2.14 where N
(m)
t =

∑m
i=1 1{τi≤t}

and τ1, τ2 . . . , τm are exchangeable, conditionally independent, and have intensities
λt,i = λt as in (7.1.1).

The average historic one-year default rate for speculative-grade entities during
the period 2000-2023 was 3.64%; see e.g. Table 1 in [50]. Furthermore, from
Table 1 in [50], we also observe that the average one-year investment-grade default
rate in the same period (2000-2023) is much smaller, and is given as 0.08%. We
therefore want to have a one-year default probability in the upper part of the interval
[0.08, 3.64], and in our numerical examples we choose a CIR-process in (7.1.1) with
the parameters ac = 0.6, µc = 0.056, σc = 0.18, and λ0 = 0.0262, which renders an
individual one-year default probability of 0.0329 = 3.29%, computed via well-known
explicit expressions for the default probability P [τi ≤ t] when τi has a CIR-default
intensity. We also make sure that 2acµc > σ2

c so that zero is avoided; see e.g.
p.391 in [13]. The above observations motivate the choice of the parameters for the
CIR-process and also the one-year default probability, and are all stated in Table
1.

Table 1. The parameters and related quantities for the CIR-
process λt and the stock price St where we let m = 125.

λt λ0 = 0.0262 ac = 0.6 µc = 0.056 σc = 0.18 P [τi ≤ 1] = 0.0329 = 3.29%

St S0 = 50 µ = 0.15 = 15% σ = 0.2 = 20% η = 26.71 E [U ] = 1
η = 0.0374 = 3.74%

Furthermore, we let the number of defaultable entities be m = 125, see Table 1,
which is the same number of entities that are found in main CDS indices such as the
iTraxx Europe and CDX.NA.IG US. Of course, one can choose a higher value for
m, but here we set m = 125. In Table 2, we show the expected number of defaults

E
[
N

(m)
t

]
for t = 1, 3, 6, 12, 18, 24 months when individual default times have CIR-

intensities as in Table 1 and where m = 125. So, from Table 2 we see that our CIR-
intensities implies that we expect, for example, around 2 defaults in six months,
4 defaults in one year, and 6 to 7 defaults in one and a half years. Consequently,
this is also the number of jumps that we expect to occur in our stock price up to
each of these time points where each jump has the expected size of E [U ] = 1

η . By

our assumption of exchangeability, we have that E
[
N

(m)
t

]
= mP [τi ≤ t], so the

individual default probabilities at t = 1, 3, 6, 12, 18, 24 months are obtained from

Table 2 by dividing the numbers for E
[
N

(m)
t

]
with m. In Table 2, we see that

after 6 months there is a 0.1% probability of having 25 defaults or more among
C1, . . . ,Cm, and after 24 months there is a 0.1% probability of 32 defaults or more
among C1, . . . ,Cm.

Next, we turn to the parameters for the stock price model. We set S0 = 50, µ =
0.15 = 15%, and σ = 0.2 = 20%, see Table 1. First, the motivation for choosing µ =
15% follows from the fact that during the 10-year period of 2012 to the end of 2021,
the average one-year US stock market return was 14.88% not adjusted for inflation;

see e.g. [49]. So, solving for µ in the Black-Scholes model with E
[
S
(BS)
t

]
= S0e

µt =
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Table 2. The expected number of defaults E
[
N

(m)
t

]
and

VaR99.9%

(
N

(m)
t

)
for t = 1, 3, 6, 12, 18, 24 months when individ-

ual default times have CIR-intensities as in Table 1 and where
m = 125.

t (in months) 1 3 6 12 18 24

E
[
N

(m)
t

]
0.2802 0.8818 1.875 4.116 6.596 9.222

VaR99.9%

(
N

(m)
t

)
20 25 25 25 27 32

S0 · 1.1488 with t = 1, or simply by using a first-order expansion of eµ ≈ 1 + µ,
after rounding with two significant digits, we get that µ = 0.15 = 15%. Note that
we used the Black-Scholes model to find µ, and one can of course also use our stock
price model in Corollary 2.13, but this will lead to a very complicated estimation
problem, which is not the topic of this paper. Next, the motivation for the choice
of σ = 20% follows from the fact that, during the 9-year period 2012 to the end
of 2020, the average one-year US stock market volatility was 16.40% not adjusted
for inflation; see e.g. [51]. However, accounting for that the VIX volatility has been
higher during the period of 2012 to the end of 2020, we therefore set σ = 20%; see
e.g. [39].

Finally, the jump parameters η are challenging to estimate. Instead, we chose
to express the expected one-year stock value in our model as some fixed known
value; specifically, we let E [ST ] = S0, which together with the default distribution

for N
(m)
t will imply a value of η. Hence, η is calibrated so that the defaults from

the CIR-model “wipe” out the expected one-year log-growth for a corresponding
Black-Scholes model with drift µ = 15% and where m = 125. Thus, the jump
parameter η is calibrated so that, for T = 1 year, we have

E [ST ] = S0 or equivalently E

( η

η + 1

)N
(m)
T

 = e−µT for T = 1 (7.1.4)

see also Equation (2.32) in Section 2. With the above parameters, we get that η =
26.71 via a numerical solver so that E [Ui] =

1
η = 0.0374, see Table 1. Alternatively,

we could just pick an ad-hoc value of η, but we find it much more economically
intuitive to use the condition (7.1.4) to find a numerical value of η. More generally,
we can use condition (2.30) or equivalently condition (2.31) with an arbitrary value
of β ∈ (0, 1) to find the implied η-parameter.

The above numerical choices of µ, σ, and the one-year default probability will
consistently be used in the rest of this paper, and therefore in Sections 8 - 10 we
will just state these values for µ, σ, and the one-year default probability in tables
and refer to this subsection for more motivations of the choice. Furthermore, the
method of finding η via condition (7.1.4) is chosen to be the same in Sections 8 -
10, however the numerical value of η will be different, since in Sections 8 - 10 we
consider other credit portfolio models for the defaultable entities, thus leading to

other numerical values of the distribution of N
(m)
t used in (7.1.4).
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Figure 1. The time evolution of the distribution P
[
N

(m)
t = k

]
for t = 1, 2, ..24 months when individual default times have CIR-
intensities as in Table 1 where m = 125. Left panel: in log-scale
for k = 0, ..., 125. Right panel: for k = 0, ..., 18. The plots in the
two panels are viewed from different angles.

From Theorem 2.14 and the definition of VaR, we know that in order to com-

pute VaRα

(
L
(S)
t

)
, we need to compute the distribution of the number of defaults(

P
[
N

(m)
t = k

])m
k=0

. Finding efficient numerical methods for P
[
N

(m)
t = k

]
is a

non-trivial problem. We will in this paper use the method developed in [25] to

find P
[
N

(m)
t = k

]
, which is based on saddlepoint methods for exchangeable, con-

ditionally independent credit portfolio models, and works both for intensity based

frameworks as well as in factor copula settings. To find P
[
N

(m)
t = k

]
in the inten-

sity based case, we need the density fZt
(z) of the random variable Zt =

∫ t

0
λudu

where λt is a CIR-process defined as in (7.1.1). Details of how to find fZt(z) as well
as numerical graphs of fZt

(z) are found in, e.g., [25].

With the CIR-parameters parameters in Table 1, we compute P
[
N

(m)
t = k

]
with

the saddlepoint method mentioned above, and show in the left panel of Figure 1

plots, for m = 125, of the time evolution of the distribution P
[
N

(m)
t = k

]
in log-

scale where k = 0, ..., 125 and t = 1, 2, . . . , 24 months. Furthermore, the right panel

in Figure 1 displays the time evolution of the number of distribution P
[
N

(m)
t = k

]
in normal scale where k = 0, 1, . . . , 18 whenm = 125 and t = 1, . . . , 24 months when
individual default times have CIR-intensities with parameters the same as in the
left panel of Figure 1. The plots in Figure 1 were generated with the saddlepoint
algorithms found in [25], and in these figures we write t in months, but the actual

computations of P
[
N

(m)
t = k

]
are done with t measured in units of years. So, for

example, 2, 6, and 24 months mean that t is given by t = 2
12 ,

6
12 and t = 24

12 = 2

in our formulas for the computation of P
[
N

(m)
t = k

]
. The same also holds for the

results in Table 2.
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7.2. VaR over a 2-year period for one stock when the jumps in the stock
price are due to default times with CIR-intensities. In this subsection we

will study Value-at-Risk for the loss L
(S)
t = − (St − S0) of one individual stock

with price St given by Definition 2.1 under the real probability measure P in a
credit portfolio model as discussed in Subsection 7.1. Hence, the stock price St

has jumps at the default times τ1, τ2 . . . , τm, which are exchangeable and where the
individual default times have CIR-intensities with parameters the same as in Table
1. Furthermore, the jump parameter η is calibrated so that condition (7.1.4) holds
and the rest of the parameters for St are displayed in Table 1.

In Figures 2-3, we study the time evolution of Value-at-Risk (in % of S0) of a
single stock for t = 1, 2, . . . , 24 months, computed with same stock parameters as in
Table 1. More specifically, for m = 125, the left panel in Figure 2 displays the time
evolution of Value-at-Risk in % of S0 for t = 1, 2, . . . , 24 months in the case when St

has jumps coming from default times which have CIR-intensities with parameters
the same as in Table 1. The right panel in Figure 2 displays the Black-Scholes case
for the stock price, i.e. with no jumps in St, which has same drift and volatility
parameters as in the left panel.

The interpretation of the results in Figure 2 is as follows: For example, in the left
panel of Figure 2, looking at the black line (99%-VaR), we see that for t = 14

12 , that
is, after 14 months, then there is a 1% probability of having a loss in the stock which
is 50% or bigger of the initial stock price S0 at time t = 0. Similarly, for the red line
(99.9%-VaR) in the left panel of Figure 2, at t = 20

12 , that is, 20 months after the
starting point t = 0, there is 0.1% probability of having a stock loss which is 70%
(or bigger) of the starting value S0 at time t = 0. The interpretation of the graphs
in the right panel of Figure 2, i.e. the Black-Scholes case, should be done in the
same way as in the left panel of Figure 2. Furthermore, in Figure 3 we plot the time
evolution of the relative difference of Value-at-Risk (in %) between the case with
jumps in the stock price St coming from default times which have CIR-intensities
with parameters the same as in Table 1, and the standard Black-Scholes case, i.e.
without jumps. The rest of the parameters for St are the same as in Table 1.

As can be seen in Figure 3, introducing downward jumps in St at the default
times τ1, τ2 . . . , τm which are exchangeable and where the individual default times
have CIR-intensities as in Subsection 7.1 will in general increase the Value-at-Risk
up to around 50% and much more at a few time points (up to 250%) compared to the
Black-Scholes model, and this holds for all three confidence levels α = 95%, 99%,
and 99.9%. For α = 95%, the relative difference (jump-stock model vs. Black-
Scholes) is almost linearly increasing in time t. Of course, that the relative VaR
difference between the jump vs. non-jump case will increase as shown in Figure 3 is
not surprising, but knowing exactly how big the difference actually is as a function
of different parameters as well as time t requires the use of somewhat analytical
formulas and efficient numerical methods.

7.3. Some remarks on the numerical computation of the loss distribu-
tions. In this subsection, we give some important remarks on the computation of
the loss distribution F

L
(S)
t

(x). The observations done in this subsection will also

hold for the loss distributions derived in Section 4 and Section 5, and for the credit
portfolio model studies in Section 8.

The computations in the left panel of Figure 2 are done by numerically solving

Equation (2.33). From Theorem 2.14, we know that F
L

(S)
t

(x) = P
[
L
(S)
t ≤ x

]
is
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Figure 2. m = 125: The time evolution of Value-at-Risk (in % of
S0) of a single stock for t = 1, 2, . . . , 24 months. Left panel: In
the case with jumps in St coming from default times which have
CIR-intensities with parameters the same as in Table 1. Right
panel: In the Black-Scholes case, i.e. without jumps, where drift
and volatility are the same as in Table 1.

given by

F
L

(S)
t

(x) = 1−
m∑

k=0

Ψk

(
1− x

S0
, t, µ, σ, 1, η

)
P
[
N

(m)
t = k

]
(7.3.1)

where the mappings Ψk (x, t, µ, σ, u, η) satisfy 0 ≤ Ψk (x, t, µ, σ, u, η) ≤ 1 and are
defined in (2.19)-(2.20). By looking at, e.g., the left panel in Figure 1, but also in

the left panels of Figures 4, 11, and 13, we see that the probabilities P
[
N

(m)
t = k

]
are extremely small for moderate and large integers k for most time points t. For

example, in the left panels of Figure 1, we have that P
[
N

(m)
t = k

]
< 10−14 for

k ≥ 65 at all time points t, and P
[
N

(m)
t = k

]
< 10−28 for k ≥ 85 at all t. These

observations mean that we do not have to compute all the terms in the sum for
F
L

(S)
t

(x) given by (7.3.1), but still have a very accurate approximation to F
L

(S)
t

(x)

in the truncated sum. For example, let ε be a very small positive constant, e.g.
ε ≤ 10−9. Then, for each fixed t, there exists a subsequence k0, k1, k2, . . . , kmt(ε) of
the integers 0, 1, 2, . . . ,m such that

mt(ε)∑
j=0

P
[
N

(m)
t = kj

]
≥ 1− ε . (7.3.2)

In the credit portfolio models used in this paper, the subsequence k0, k1, k2, . . . ,
kmt(ε) can always be chosen in the form 0, 1, . . . ,mt(ε), that is, kj = j for j =
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Figure 3. The time evolution of the relative difference of Value-
at-Risk (in %) between the case of with jumps in the stock price
St coming from default times which have CIR-intensities with pa-
rameters the same as in Table 1, and the standard Black-Scholes
case, i.e. without jumps. The relative difference is measured with
respect to the Black-Scholes case. The rest of the parameters for
St are the same as in Table 1.

0, 1, . . . ,mt(ε), so that (7.3.2) can be rewritten as

mt(ε)∑
k=0

P
[
N

(m)
t = k

]
≥ 1− ε and thus

m∑
k=mt(ε)+1

P
[
N

(m)
t = k

]
< ε (7.3.3)

where it obviously holds that mt(ε) ≤ m for any 0 < ε < 1 and at all time points t.
Typically, for the credit portfolio models studied in this paper, it will often (but not
always) hold that mt(ε) << m for most time points t. Given an arbitrary number
0 < ε < 1, and for a fixed t, we can in view of the above observations define the
function F ε

L
(S)
t

(x) as

F ε

L
(S)
t

(x) = 1−
mt(ε)∑
k=0

Ψk

(
1− x

S0
, t, µ, σ, 1, η

)
P
[
N

(m)
t = k

]
(7.3.4)

where the rest of the parameters and mappings are defined as in (7.3.1). Then,
(7.3.1), (7.3.3), and (7.3.4) together with the triangle inequality imply that∣∣∣FL

(S)
t

(x)− F ε

L
(S)
t

(x)
∣∣∣ ≤ ε for all x ∈ R (7.3.5)

where in (7.3.5) we also used that 0 ≤ Ψk (x, t, µ, σ, u, η) ≤ 1 for all k. Hence, for
small ε, then (7.3.5) implies that F ε

L
(S)
t

(x) will be a very sharp approximation to the
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loss distribution F
L

(S)
t

(x) in (7.3.1). Since it will often hold that mt(ε) << m, com-

puting F ε

L
(S)
t

(x) will be much faster than computing the exact distribution F
L

(S)
t

(x),

while simultaneously having an accuracy of F ε

L
(S)
t

(x) compared to F
L

(S)
t

(x) that is

smaller than ε given relation (7.3.5). Table 3 displays mt(ε) for t = 1, 3, 6, 12, 18, 24
months, where m = 125 and ε = 10−9 when the individual default times have
CIR-intensities as in Table 1. Hence, from Table 3 we see that in order to have an

Table 3. The upper truncation level mt(ε) defined as in (7.3.3)
for t = 1, 3, 6, 12, 18, 24 months wherem = 125 and ε = 10−9, when
the individual default times have CIR-intensities as in Table 1.

t (in months) 1 3 6 12 18 24
mt(ε) 53 54 54 54 54 55

accuracy of order ε = 10−9 in our approximation F ε

L
(S)
t

(x) to the exact distribution

F
L

(S)
t

(x) at the time points t = 1, 3, 6, 12, 18, 24, we never need to have more than

56 terms in the sum of F ε

L
(S)
t

(x) compared with 126 terms in F
L

(S)
t

(x) (recall that we

start counting from 0, so, e.g., mt(ε) = 55 means 56 terms in the sum for F ε

L
(S)
t

(x)

etc.). Also, note that for, e.g., 99.9% VaR computations, we will in our numerical
solution of Equation (2.33) work with x∗-values so that F

L
(S)
t

(x∗) = 0.999. Since

we choose ε = 10−9, and since both F
L

(S)
t

(x) and F ε

L
(S)
t

(x) are continuous mappings

in x, and the error-bound in (7.3.5) holds uniformly for all x ∈ R, then the solution
x∗ε of the equation F ε

L
(S)
t

(x∗ε) = 0.999 should therefore be extremely close to the

exact VaR solution x∗ satisfying F
L

(S)
t

(x∗) = 0.999. More specifically, from (7.3.5)

we have

10−9 ≥
∣∣∣FL

(S)
t

(x∗ε)− F ε

L
(S)
t

(x∗ε)
∣∣∣ = ∣∣∣FL

(S)
t

(x∗ε)− 0.999
∣∣∣

so that the solution x∗ε of the equation F ε

L
(S)
t

(x∗ε) = 0.999 will give a value of

F
L

(S)
t

(x∗ε) that deviates at most 10−9 from α = 0.999 = 99.9%, which is very

accurate. Hence, we can therefore approximate the exact 99.9% VaR value x∗, with
x∗ε obtained from solving F ε

L
(S)
t

(x∗ε) = 0.999 where the function F ε

L
(S)
t

(x) is defined

as in (7.3.4). Similar arguments obviously hold for the 99% VaR and 95% VaR
computations.

Furthermore, note that 56 terms (i.e. mt(ε)+1) versus 126 terms when m = 125
(i.e m + 1 = 126) will mean a running time of VaR computations with F ε

L
(S)
t

(x)

more than twice as fast compared with VaR computations for the exact distribution
F
L

(S)
t

(x).

Finally, we again remark that the same type of truncation techniques done in this
subsection will also hold for the loss distributions derived in Section 4 and Section
5, and will be applied in all of the computations done in Section 8.

8. Numerical examples when the default times are driven by a one-factor
Gaussian copula model. In the previous section, we studied the time-evolution
of Value-at-Risk for a single stock over a two-year period in time steps of one month
where the stock has jumps at default times driven by a CIR-process. In this section,
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we will among other things study the time-evolution of Value-at-Risk for a portfolio
of stocks over a 20 day period in time steps of one trading day, with jumps in all
stock prices occurring at default times of an external group of defaultable entitles
C1, . . . ,Cm. Throughout this section, we assume that the default times τ1, τ2 . . . , τm
to the entities C1, . . . ,Cm are exchangeable, conditionally independent, and are
driven by a one-factor Gaussian copula model. First, in Subsection 8.1 we briefly
discuss the model for the default times and present the parameters used in this
framework. Then, we display related quantities such as the distribution of the

number of defaults P
[
N

(m)
t = k

]
, etc. Next, in Subsection 8.2 we study VaR for a

portfolio consisting of J = 70 stocks by using the linear approximation formulas in
Theorem 4.8. In Subsection 8.3, we consider a large portfolio with J = 150 stocks
and then use the LPA (large portfolio approximation) formulas in Theorem 5.2 to
compute VaR for this equity portfolio. Finally, in Subsection 8.4 we repeat similar
studies as in Subsection 8.2, but now for a two-year period in steps of one month.

8.1. The parameters and related quantities. In this section, we assume that
the stock prices St,j for all companies A1, . . . ,AJ are given by Definition 4.1

where N
(m)
t =

∑m
i=1 1{τi≤t} and the default times τ1, τ2 . . . , τm to the entities

C1, . . . ,Cm are exchangeable, conditionally independent, and driven by a one-factor
copula model. Hence, the conditional default probability is the same for all entities
C1, . . . ,Cm, and is given by

P [τi ≤ t |Z] = Φ

(
Φ−1 (F (t))−√

ρZ
√
1− ρ

)
(8.1.1)

where Z is a standard normal random variable, ρ is the so-called default-correlation
parameter, Φ(x) is the distribution function of a standard normal random variable.
Furthermore, F (t) = P [τi ≤ t] is the marginal default distribution same for all
entities due to the exchangeability. For more about factor copula models, see, e.g.,
[40, 42, 47] or [29]. Furthermore, since the stock prices St,j are given by Definition
4.1, the jumps Un,j in St,j at the default times are i.i.d and exponentially distributed
with parameter η > 0 the same for all companies Aj .

In our numerical examples, we set F (t) = P [τi ≤ t] = 1−e−λt, which is standard
in the credit literature, and calibrate λ so that the one-year default probability is
same as in the CIR model in Section 7, that is, 0.0329 = 3.29%, and this gives
λ = 0.0335, see Table 4. The motivation for having a one-year default probability
of 0.0329 = 3.29% is given in Subsection 7.1.

The “default-correlation” ρ in (8.1.1) is more challenging to estimate. Here,
we simply set ρ = 0.3, that is, 30%, see Table 4, and in Subsection 8.3 we will
also consider values of ρ = 0.6 = 60% to illustrate the effect of increasing default
dependence leading to higher defaults and therefore more jumps in our the stock
portfolio model. So, in this paper we only consider two values of the “unknown”
default-correlation parameter ρ, however [25] investigated stock portfolio VaR as a
function of ρ when it continuously runs through an interval on the positive real line
bounded by one, where the stock prices St,j are given by Definition 4.1 with default
times τ1, τ2 . . . , τm driven by a one-factor copula model in (8.1.1) with default-
correlation parameter ρ.

In Table 7 on p. 60, we show among other things the expected number of defaults

E
[
N

(m)
t

]
and VaR99.9%

(
N

(m)
t

)
for t = 1, 5, 10, 15, 20 days when the individual

default times are driven by a one-factor Gaussian copula model with parameters as
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Table 4. The parameters and related quantities for the one-factor
Gaussian copula model and the stock prices St,j where we let m =
125.

Gauss copula m = 125 ρ = 0.3 F (t) = 1− e−λt λ = 0.0335 P [τi ≤ 1] = 0.0329 = 3.29%

St,j S0 = 50 µ = 0.15 σ = 0.2 ρS = 0.25 η = 21.98 E [Un,j ] =
1
η = 0.0455 = 4.55%

in Table 4 and where m = 125. From Table 7, we see that the expected number
of defaults the first 20 days will never exceed one default, and consequently the
expected number of jumps in the stock prices the first 20 days will also be less than

one. By our assumption of exchangeability, we have that E
[
N

(m)
t

]
= mP [τi ≤ t] =

m(1 − e−λt), so the individual default probabilities at t = 1, 5, 10, 15, 20 days are

obtained from Table 7 by dividing the numbers for E
[
N

(m)
t

]
with m. Also note

from Table 7, in the case with ρ = 0.3, we see that, after 10 days, there is a 0.1%
probability of having 8 defaults or more among the entities in the exogenous group
which are negatively affecting the stock prices in our equity portfolio, and after 15
days there is a 0.1% probability of 11 defaults or more among the entities in the
same exogenous group.

Next, we turn to the parameters for the stock price model. First, note that the
linearized loss distribution given in Theorem 4.8 will work for heterogeneous port-
folios of arbitrary size J . However, for simplicity we will consider the homogeneous
case, that is, the stock prices St,1, . . . , St,J satisfy (4.34) in Remark 4.9, so that
S0,j = S0, µj = µ, σj = σ and ρS,j = ρS for all firms A1, . . . ,AJ in the stock port-
folio. Furthermore, we let the parameters µ and σ be same as in the CIR-model
case studied in Section 7 so that S0 = 50, µ = 0.15 = 15%, and σ = 0.2 = 20%,
and the motivation for these values are given in Subsection 7.1. Regarding ρs, from
Table 1 on p.369 in [44], we see that the average stock correlation in the period
from 1963 to 2006 was 0.237, and [43] performs similar studies as in [44], but for
the period from 1963 to 2022 and finds that the average stock correlation for this
period is 0.264; see Table 1 in [43]. Inspired by the above observations, we set our
stock correlation to ρs = 0.25, see Table 4. The jump parameter η is calibrated so
that condition (7.1.4) will hold, that is, η is calibrated so that the defaults from
the one-factor copula models “wipe” out the expected one-year log-growth for a
corresponding Black-Scholes model with drift µ = 15% and where m = 125. With
the default and stock parameters as in Table 4, we then get that η = 21.98 via a
numerical solver, so E [Un,j ] =

1
η = 0.0455, see Table 4.

With the one-factor Gaussian copula parameters in Table 4, we compute

P
[
N

(m)
t = k

]
as described above, and in the left panel of Figure 4, for m = 125, the

time evolution of the distribution P
[
N

(m)
t = k

]
in log-scale where k = 0, ..., 125 and

t = 1, 2, . . . , 20 days is shown. Furthermore, the right panel in Figure 4 displays the

time evolution of the number of distribution P
[
N

(m)
t = k

]
in normal scale where

k = 0, 1, . . . , 18 when m = 125 and t = 1, 2, . . . , 20 days, where the default times
have the same distribution as in Figure 4. The plots in Figure 4 were generated with
the algorithms developed in [25], and in these figures we write t in days, but the

actual computations of P
[
N

(m)
t = k

]
are done with t measured in units of years.
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So, for example, 2, 6, and 20 days mean that t is given by t = 2
252 ,

6
252 , and

20
252 in

the formulas used for the computations of P
[
N

(m)
t = k

]
, where we remind that 252

is the average number of trading days on, e.g., the US-stock market.

Figure 4. The time evolution of the distribution P
[
N

(m)
t = k

]
for

t = 1, 2, . . . , 20 days in a one-factor Gaussian copula model with
parameters as in Table 4, where m = 125 and ρ = 0.3. Left panel:
in log-scale for k = 0, ..., 125. Right panel: for k = 0, ..., 18.

8.2. VaR over a 20-day period for a linearized portfolio of stocks when the
jumps are due to default times driven by a one-factor Gaussian copula
model. In this subsection, we study Value-at-Risk for a portfolio of stocks as a
function of time over a 20-day period in time steps of one trading day, with jumps
in all stock prices occurring at default times τ1, τ2 . . . , τm, which are exchangeable,
conditionally independent, and are driven by a one-factor copula model as discussed
in Subsection 8.1 and with parameters as in Table 4. We study VaR for a portfolio
of J = 70 stocks by using the linear approximation formulas in Theorem 4.8.

In Figure 5-6, we study the time evolution of Value-at-Risk (in % of V0) for a
portfolio of J = 70 stocks discussed in Subsection 8.1, where t = 1, 2, . . . , 20 days,
computed with same stock parameters as in Table 4. For m = 125, the left panel in
Figure 5 displays the time evolution of Value-at-Risk in % of V0 for t = 1, 2, . . . , 20
days in the case when St has jumps coming from default times in a one-factor
Gaussian copula model with parameters as in Table 4. The right panel in Figure 5
displays the Black-Scholes case for the stock price, i.e. with no jumps in St, which
has the same drift and volatility parameters as in the left panel. From the left
panel of Figure 5, looking at the red line (99.9%-VaR), we see that, for t = 12

252 ,
that after 12 days there is a 0.1% probability of having a loss in the stock portfolio
of 42% or bigger, of the initial portfolio value V0 at time t = 0. Furthermore, in
Figure 6 we plot the time evolution of the relative difference of Value-at-Risk (in %)
between the case with jumps in the stock prices St,j coming from default times in a
one-factor Gaussian copula model with parameters as in Table 4, and the standard
Black-Scholes case, i.e. without jumps. The relative difference is measured with
respect to the Black-Scholes case. The rest of the parameters for St,j are the same
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as in Table 4. As can be seen in Figure 6, introducing downward jumps in St,j

at the default times τ1, τ2 . . . , τm, which comes from a one-factor Gaussian copula
model, will for example increase the 99.9% VaR up to around 1450% compared to
the Black-Scholes model, and for the 99% VaR up to 765%. Furthermore, we also
note the curves in the left panel of Figure 5 are not as smooth as in the left panel
of Figure 2, and the reason for this discontinuity will be explained in Subsection
8.3. All the VaR computations in the left panel of Figure 5 are done by numerically
solving the equation FL∆V

t
(x) = α where FL∆V

t
(x) = P

[
L∆V
t ≤ x

]
is computed

using Theorem 4.8 under condition (4.34) in Remark 4.9 so that the mappings
ΨV

k (x, t, µ, σ, S0, ρS , η) in FL∆V
t

(x) are given by (4.35)-(4.36). Furthermore, in our

computations of FL∆V
t

(x), we use the same truncation techniques as discussed in
Subsection 7.3. Finally, the VaR computations in the right panel of Figure 5 are
done using Equation (4.43) in Corollary 4.11 for the “Black-Scholes” linear portfolio
case.
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Figure 5. m = 125: The time evolution of Value-at-Risk (in
% of V0) of a linearized stock portfolio with J = 70 stocks for
t = 1, 2, . . . , 20 days. Left panel: The case with jumps in the
stock price where the individual default times are driven by a one-
factor Gaussian copula model with parameters as in Table 4. Right
panel: The Black-Scholes case, i.e. without jumps, and where the
drift and volatility are same as in the left panel.

As discussed in Section 5, the linearized loss L∆V
t will only work somewhat

accurately as an approximation of the true loss L
(V )
t when the time t is small, that

is, if |Xt,j | is small for all j when t is small. Recall that Xt,j is defined as in (4.11),
and from the expression in (4.11), it is clear that the more potential number of jump

terms
∑N

(m)
t

n=1 Un,j in the expression for Xt,j , the more defaultable entities m, and
the less likely it will be that |Xt,j | is “small”. Thus, |Xt,j | should in general grow
in the number of defaultable entities m. So, it is therefore of interest to study St,j

and its linear approximation S0 (1 +Xt,j) as a function of the number of defaulted
entities m for different time points t. Hence, Figure 7 displays the expected value of
St,j and its linear approximation S0 (1 +Xt,j), that is, E [St,j ] and S0E [(1 +Xt,j)]
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Figure 6. The time evolution of the relative difference of Value-at-
Risk (in %) for t = 1, 2, . . . , 20 days between the case of linearized
stock portfolio with J = 70 stocks with jumps in the stock price
where the individual default times are driven by a one-factor Gauss-
ian copula model with parameters as in Table 4, and the linearized
Black-Scholes case, i.e. without jumps, where drift and volatility is
same as in the jump case. The relative difference is measured with
respect to the Black-Scholes case.

as a function of the number of defaulted entities m for t = 5, 10, 20 and t = 252
days where Xt,j is defined as in Equation (4.11) with parameters as in Table 4.
The jumps in the stock price occur at default times driven by a one-factor Gaussian
copula model with parameters as in Table 4. The number of defaultable entities m
runs from 5 up to 135 in Figure 7.

Furthermore, Figure 8 shows the relative difference between E [St,j ] and
S0E [(1 +Xt,j)] in percent, as a function of the number of defaulted entities m
for t = 5, 10, 20 days in the left panel and for t = 252 days in the right panel, where
Xt,j is defined as in Equation (4.11), with the model and parameters the same as in
Figure 7. The relative difference is measured with respect to E [St,j ]. From Figure
8, we see that the relative error, or difference, for t = 5 days never exceeds 0.07%
when m ≤ 135. Also, when t = 1 year, that is, t = 252 days, then the relative
error is always smaller than 6%. In all plots in Figure 8, the relative difference is
increasing when m ≥ 20.

8.3. VaR over a 20-day period for a large homogeneous stock portfolio
where jumps in stocks are due to default times driven by a one-factor
Gaussian copula model. In this subsection, we study Value-at-Risk for a large
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Figure 7. Expected value of St,j and its linear approximation
S0 (1 +Xt,j), that is, E [St,j ] and S0E [(1 +Xt,j)] as a function of
the number of defaulted entities m for t = 5, 10, 20, and 252 days
where Xt,j is defined as in Equation (4.11) with parameters as in
Table 4. The jumps in the stock price occur at default times driven
by a one-factor Gaussian copula model with parameters as in Table
4.

homogeneous portfolio of stocks as a function of time over a 20-day period in time
steps of one trading day. The stock prices in the portfolio have jumps occurring
at default times τ1, τ2 . . . , τm which are exchangeable, conditionally independent,
and are driven by a one-factor Gaussian copula model as discussed in Subsection
8.1 and with parameters as in Table 4. We study VaR for a portfolio of J = 150
stocks by using the LPA approximation formulas in Theorem 5.2, and we do our
VaR studies for two different levels of the default correlation parameter ρ in the
one-factor Gaussian copula model. First, in the left panel of Figure 9 we display
the time evolution of Value-at-Risk in % of V0 for t = 1, 2, . . . , 20 days in the case
when St,j has jumps coming from default times in a one-factor Gaussian copula
model with parameters as in Table 4, so the default-correlation ρ is set to ρ = 0.3.
The right panel in Figure 9 displays the same quantities as in the left panel, but
now with the default-correlation parameter ρ = 0.6 and η = 13.92 so that condition
(7.1.4) holds, just as in the left panel of Figure 9. Comparing the VaR-curves in
the left and right panel in Figure 9, we see that the 99% and 99.9% VaR plots for
ρ = 0.6 in the right panel are much higher than the corresponding curves for ρ = 0.3
in the left panel where η = 13.92, with the rest of the parameters the same as in
the left panel. For example, looking at the red line (99.9% VaR) in the right panel
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Figure 8. Relative difference between E [St,j ] and S0E [(1 +Xt,j)]
in percent as a function of the number of defaulted entities m for
different time points t where Xt,j is defined as in Equation (4.11)
with model and parameters the same as in Figure 7. The relative
difference is measured with respect to E [St,j ]. Left panel: for
t = 5, 10, 20 days. Right panel: for t = 252 days.

with ρ = 0.6, we see that after 12 days there is a 0.1% probability of having a loss
in the portfolio of 80% or more than the initial portfolio value V0 at time t = 0.
However, when ρ = 0.3 in the left panel, there is for the same time, that is, 12
days, a 0.1% probability of having a loss in the portfolio of 33% or more than the
initial portfolio value V0 at time t = 0. The big differences between the curves for
the same α-levels in the two panels are due to the fact that a default-correlation of

ρ = 0.6 will create probabilities P
[
N

(m)
t = k

]
that are substantially larger for lower

k-values compared to the corresponding probabilities in the case when ρ = 0.3.
Looking at the left panel in Figure 11, which displays the time evolution of the

distribution P
[
N

(m)
t = k

]
on the log-scale for k = 0, ..., 125 and t = 1, 2, . . . , 20

days in a one-factor Gaussian copula model where ρ = 0.6, and comparing these

probabilities with the corresponding values for P
[
N

(m)
t = k

]
in the left panel of

Figure 4 where ρ = 0.3, we see that the levels of P
[
N

(m)
t = k

]
when ρ = 0.6 for

some k are a factor 105 higher compared with the probabilities P
[
N

(m)
t = k

]
when

ρ = 0.3 for the same k-values.
Furthermore, we also note that the curves in both of panels of Figure 9 display

a non-smooth behavior. The main reason for the somewhat discontinuous behavior
of the graphs in Figure 9 are explained by looking at the middle and right panels
in Figure 19 on p.66, which display the time evolution of Value-at-Risk at t =

1, 2, . . . , 20 for the default counting process N
(m)
t driven by a one-factor Gaussian

copula model with m = 125, parameters as in Table 4, and default-correlation

parameter ρ = 30% (middle panel) and ρ = 60% (right panel). Recall that N
(m)
t

is a counting process, so the curves in Figure 19 will be piecewise constant and
increasing. Comparing the left and right panels in Figure 9 with the middle and
right panels in Figure 19, we clearly see that the discontinuities, i.e. “jumps”, at



52 ALEXANDER HERBERTSSON

0 2 4 6 8 10 12 14 16 18 20
t (days)

0

5

10

15

20

25

30

35

40

45

V
aR

(L
t)/

V
0
 (

in
 %

)

VaR (Lt) for LPA-loss of Lt=V0-Vt in % of V0 when St,j jumps at defaults, m=125: Gaussian copula case, rho=0.3

VaR
95

(L
t
)/V

0
,   = 30%

VaR
99

(L
t
)/V

0
,   = 30%

VaR
99.9

(L
t
)/V

0
,   = 30%

0 2 4 6 8 10 12 14 16 18 20
t (days)

0

10

20

30

40

50

60

70

80

90

100

V
aR

(L
t)/

V
0
 (

in
 %

)

VaR (Lt) for LPA-loss of Lt=V0-Vt in % of V0 when St,j jumps at defaults, m=125: Gaussian copula case, rho=0.6

VaR
95

(L
t
)/V

0
,   = 60%

VaR
99

(L
t
)/V

0
,   = 60%

VaR
99.9

(L
t
)/V

0
,   = 60%

Figure 9. The time evolution of Value-at-Risk (in % of V0) com-
puted with the LPA-formula in Theorem 5.2 for t = 1, 2, . . . , 20
days of a homogeneous portfolio with J = 150 stocks which has
jumps in all stock prices at default times driven by a one-factor
Gaussian copula model with m = 125 and parameters as in Ta-
ble 4. Left panel: Default-correlation parameter ρ = 30% and
η = 21.98. Right panel: Default-correlation parameter ρ = 60%
and η = 13.92. In both panels, condition (7.1.4) holds.

different time points in the middle and right panels of Figure 19 coincide in time
with the somewhat discontinuous behavior of the graphs in the left and right panels
of Figure 9. The main reason for the similar discontinuous behavior in Figure 9
and the middle-right panels in Figure 19 is that the computations are done over a
very short time period of 20 days, in steps of one trading day, leading to a quite

degenerated distribution for P
[
N

(m)
t = k

]
over k as seen in the right panel of Figure

4. More specifically, for t = 1, 2, . . . , 20 days, the distribution P
[
N

(m)
t = k

]
will

have a very high probability for k = 0 (“no defaults”) almost equal to one, while

P
[
N

(m)
t = k

]
will be very small for k ≥ 1. Furthermore, the distribution function

F
N

(m)
t

(x) for N
(m)
t will for small time points therefore have similar behavior to the

LPA-distribution F LPA

L
(V )
t

(x) given by (5.5), or, equivalently, (5.24). Hence, for fixed

t, the tail behavior of F LPA

L
(V )
t

(x) and F
N

(m)
t

(x) will display similar characteristics for

smaller time points, explaining the discontinuous behavior of the graphs in Figure
9, particulary when comparing with the middle and right panels in Figure 19. If

P
[
N

(m)
t = k

]
is computed over a long period, such as two years, then P

[
N

(m)
t = k

]
will have quite large probabilities also for k ≥ 1, see e.g. the right panel in Figure 13.

Hence, as time t increases (say, one year or more), the distribution of P
[
N

(m)
t = k

]
over k will be less “degenerated” leading to a more smooth curve for the tail behavior
of F LPA

L
(V )
t

(x), and therefore more smooth VaR curves for the stock portfolios, see for

example in Subsection 8.4, for longer periods, such as two years, will lead to very
smooth VaR-curves in the Gaussian one-factor case, with the same parameters as
in Table 4.
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Figure 10. The time evolution of the relative difference of Value-
at-Risk (in %) for t = 1, 2, . . . , 20 days between a stock portfolio
with jumps as in Figure 9 using the LPA formula in Theorem 5.2
and the standard Black-Scholes case, i.e. without jumps, given
by the right panel in Figure 11. The relative difference is mea-
sured with respect to the Black-Scholes case. All parameters for
the jump-model are as in Figure 9. Left panel: With default-
correlation parameter ρ = 30% and η = 21.98. Right panel:
With default-correlation parameter ρ = 60% and η = 13.92.

Next, in the two panels in Figure 10, we display the time evolution of the relative
difference of Value-at-Risk (in %) for t = 1, 2, . . . , 20 days between a stock portfolio
with jumps as in Figure 9 using the LPA-formula (5.5) in Theorem 5.2 and the
standard Black-Scholes case, i.e. without jumps, given in the right panel of Figure 11
computed with the Black-Scholes LPA-formula in Equation (5.30) with parameters
as in Table 4. As can be seen in Figure 10, the differences between the jump vs,
non-jump VaR-cases are huge. For example, the 99.9% VaR for ρ = 0.6 in the right
panel is for some time points around 3000% higher than the corresponding 99.9%
VaR values in the Black-Scholes portfolio case. In our VaR-computations in Figure
9, we use the same truncation techniques for the LPA-portfolio loss distributions as
discussed in Subsection 7.3.

8.4. VaR over a 2-year period for a large homogeneous stock portfolio
where jumps in stocks are due to default times driven by a one-factor
Gaussian copula model. In this subsection, we repeat similar studies for the
same model and same parameters as in Subsection 8.2, but now for a two-year
period in steps of one month. The obtained VaR-curves in this subsection will be
smooth and continuous, just as in the CIR-case where we also studied VaR over a
two-year period. Hence, Figure 12 shows the same type of VaR-curves as in Figure
5, but for a two-year period, and all parameters in Figure 12 are the same as in
Figure 5, and given by Table 4. By comparing the curves in the left panel of Figure
12 with the graphs in left panel of Figure 5, we clearly see that the VaR values
over a two-year period are very smooth and continuous. Unsurprisingly, the VaR
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Figure 11. Left panel: The time evolution of the distribution

P
[
N

(m)
t = k

]
in log-scale for k = 0, ..., 125 and t = 1, 2, . . . , 20 days

in a one-factor Gaussian copula model where m = 125, ρ = 0.6, η =
13.92, and the rest of the parameters are the same as in Table 4.
Right panel: The time evolution of Value-at-Risk (in % of V0)
for t = 1, 2, . . . , 20 days of a homogeneous portfolio with J = 150
stocks in the Black-Scholes case computed with the LPA-formula
in Equation (5.30) and with parameters as in Table 4.

values for the two-year period are also much higher than for the 20-day period. For
example, looking at the red line (99.9% VaR) in Figure 12, we see that, after 12
months, there is a 0.1% probability of having a loss in the portfolio which is 90%
or more than the initial portfolio value V0 at time t = 0.

In Figure 13, we display the time evolution of the distribution P
[
N

(m)
t = k

]
for

t = 1, 2, . . . , 24 months in a one-factor Gaussian copula model with parameters as in
Table 4 where m = 125 and ρ = 0.3. Comparing the probabilities in Figure 13 over
a two-year period with those in Figure 4 over a 20-day period, we see that there are
huge differences. Furthermore, in the two-year case our probabilities are now much
less degenerated, i.e. not centered around k = 0, as in the 20-day period, and this
fact also explains the much more smooth curves in in the left panel of Figure 12
compared with those in left panel of Figure 5. All computations in Figure 12 are
done as in Subsection 8.3 and with the same parameters, and the only difference is
that we now consider a two-year period in steps of one month. Furthermore, just
as in previous subsections, we will in our VaR computations in Figure 12 use the
same truncation techniques for the LPA portfolio loss distributions as discussed in
Subsection 7.3.

Note that the right panel in Figure 12 shows the VaR-values for the Black-
Scholes case, i.e. without jumps, using the LPA-formula in Equation (5.30) and
with the same drift, stock-correlation, and volatility parameters as in the left panel,
see Table 4. From the right panel in Figure 12, we see that in the Black-Scholes
LPA portfolio model it is extremely difficult to obtain losses over a two-year period,
where we remind that a negative loss is a gain. For example, we see that after 20
months there is a 95% probability of having a gain which is 15.2% or more of the
initial portfolio value V0. Similarly, after 20 months there is a 99% probability of
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Figure 12. The time evolution of Value-at-Risk (in % of V0)
computed with the LPA-formulas in a homogeneous portfolio with
J = 150 stocks for t = 1, 2, . . . , 24 months. Left panel: The case
with jumps in the stock price where the individual default times
are driven by a one-factor Gaussian copula model with parameters
as in Table 4 and using the LPA-formula in Theorem 5.2. Right
panel: The Black-Scholes case, i.e. without jumps, using the LPA-
formula in Equation (5.30) and with parameters as in Table 4.

Figure 13. The time evolution of the distribution P
[
N

(m)
t = k

]
for t = 1, 2, . . . , 24 months in a one-factor Gaussian copula model
with parameters as in Table 4 where m = 125 and ρ = 0.3. Left
panel: in log-scale for k = 0, ..., 125. Right panel: for k =
0, ..., 18. The plots in the panels are viewed from different angles.

having a gain which is 10.3% or more of the initial portfolio value V0, and 99.9%
probability of having a gain which is 4.96% or more of the initial portfolio value V0.
The intuitive explanation of these VaR results in the Black-Scholes LPA portfolio
setting is that the growth rate will for longer time periods beat the downside risk



56 ALEXANDER HERBERTSSON

given by the volatility term, while such positive stock prognoses are never possible
in the corresponding stock price model with jumps at external defaults over the
same time period of 20 months, as clearly seen in the left panel of Figure 12.

Table 5. The expected number of defaults E
[
N

(m)
t

]
and

VaR99.9%

(
N

(m)
t

)
for t = 1, 6, 12, 18, 24 months when individual

default times are driven by a one-factor Gaussian copula model
with parameters as in Table 4 and where m = 125.

t (in months) 1 6 12 18 24

E
[
N

(m)
t

]
0.3480 2.073 4.113 6.118 8.090

VaR99.9%

(
N

(m)
t

)
13 39 55 66 74

In Table 5, we show the expected number of defaults E
[
N

(m)
t

]
for t = 1, 3, 6, 12,

18, 24 months when the individual default times are driven by a one-factor Gaussian
copula model with parameters as in Table 4 and where m = 125. So, from Table
5 we see that our one-factor Gaussian copula model implies that we expect, for
example, around 2 defaults in six months, 4 defaults in one year, and 8 defaults in
two-years. Consequently, this is also the number of jumps that we expect to occur
in our stock price up to each of these time points, where each jump has the expected

size of E [U ] = 1
η . By our assumption of exchangeability, we have that E

[
N

(m)
t

]
=

mP [τi ≤ t], so the individual default probabilities at t = 1, 3, 6, 12, 18, 24 months are

obtained from Table 5, by dividing the numbers for E
[
N

(m)
t

]
with m. From Table

5 we also see that after 6 months there is a 0.1% probability of having 39 defaults
or more among the entities in the exogenous group, which are negatively affecting
the stock prices in our equity portfolio, and after 24 months (i.e. 2 years) there
is a 0.1% probability of 74 defaults or more among the entities in the exogenous
group, negatively affecting the stock prices in our equity portfolio, when using the
parameters in Table 4.

9. Numerical examples when the default times are driven by a Clayton
copula model. In the previous section, we studied the time-evolution of Value-at-
Risk for stock portfolios where the stock prices have jumps at default times driven
by a one-factor Gaussian copula model.

In order to aim for generality and robustness checking, it is of interest to also
study stock portfolio VaR values when the default times τ1, τ2 . . . , τm are generated
by copulas other than the one-factor Gaussian copula model. Therefore, in this
section we perform similar studies as in Subsection 8.3, but now for a stock price
model where the default times are exchangeable, conditionally independent, and are
driven by a Clayton copula model. First, in Subsection 9.1 we briefly discuss the
model for the default times and present the parameters used in this framework. The
marginal default distribution F (t) = P [τi ≤ t] will in this section be the same as
in Section 8 for the one-factor Gaussian copula model. Furthermore, since we want
to compute the VaR-values under similar conditions as in the one-factor Gaussian
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copula model in Subsection 8.3, we will choose the parameters in the Clayton copula
model so that the one-year default correlation is the same in both models. With
the parameters fixed in Subsection 9.1, we also display related quantities, such as

the distribution of the number of defaults P
[
N

(m)
t = k

]
, etc.

Then, in Subsection 9.2 we consider a large portfolio with J = 150 stocks and then
use the LPA (large portfolio approximation) formulas in Theorem 5.2 to compute
VaR for this equity portfolio with parameters as in Subsection 9.1. We also compare
the stock portfolio VaR values in the Clayton copula case both with the Black-
Scholes case (no jumps) and when the default times come from a one-factor Gaussian
copula model.

9.1. The parameters and related quantities. In this section, we assume that
the stock prices St,j for all companies A1, . . . ,AJ are given by Definition 4.1 where

N
(m)
t =

∑m
i=1 1{τi≤t} and the default times τ1, τ2 . . . , τm to the entities C1, . . . ,Cm

are exchangeable, conditionally independent, and driven by a Clayton copula model.
Hence, the conditional default probability is the same for all entities C1, . . . ,Cm

and is given by

P [τi ≤ t |Z] = exp
(
Z
(
1− F (t)−θ

))
(9.1.1)

where Z is a gamma-distributed random variable with parameters a = 1
θ and b = 1

so that its density fZ(z) is given by fZ(z) = z
1−θ
θ e−z

Γ( 1
θ )

for z ≥ 0. Furthermore,

F (t) = P [τi ≤ t] is the marginal default distribution and is the same for all entities
due to the exchangeability. By using the fact that the Clayton copula belongs to
the family of Archimedean copulas, it is straightforward to prove that the default
correlation Corr

(
1{τi≤t}, 1{τj≤t}

)
in a homogeneous group of obligors is given by

Corr
(
1{τi≤t}, 1{τj≤t}

)
=

(
2

F (t)θ−1

)− 1
θ − F (t)2

F (t) (1− F (t))
(9.1.2)

and this relation can be used to benchmark the Clayton copula against other factor
models, as will be seen below. For more about the Clayton copula model, see [8,29]
or [40]. Furthermore, since the stock prices St,j are given by Definition 4.1, the
jumps Un,j in St,j at the default times are i.i.d and exponentially distributed with
the parameter η > 0 the same for all companies Aj .

Since we want to compute the VaR-values under similar conditions as in the one-
factor Gaussian copula model in Subsection 8.3, we will use the same marginal de-
fault distribution F (t) = P [τi ≤ t] as in Section 8 for the one-factor Gaussian copula
model, see Table 6. Furthermore, given F (t) = P [τi ≤ t], we choose the Clayton-
copula parameter θ so that the one-year default correlation is the same as in the
one-factor Gaussian copula model used in Subsection 8, where VaR values for two
different correlation parameters ρ were studied, ρ = 0.3 = 30% and ρ = 0.6 = 60%.
While the Clayton copula model allows for an explicit expression of the default
correlation Corr

(
1{τi≤t}, 1{τj≤t}

)
as stated in (9.1.2), there is no explicit formula

for Corr
(
1{τi≤t}, 1{τj≤t}

)
in the one-factor Gaussian copula model. However, it is

still easy to numerically compute Corr
(
1{τi≤t}, 1{τj≤t}

)
in the one-factor Gaussian

copula model, which for t = 1 and ρ = 30% gives Corr
(
1{τi≤1}, 1{τj≤1}

)
= 0.0812,

and for ρ = 60% with t = 1 we get Corr
(
1{τi≤1}, 1{τj≤1}

)
= 0.2467. Hence,

in this section we use two different parameters θ corresponding to the two ρ-
parameters (ρ = 30% and ρ = 60%) in Subsection 8.3 so that these θ’s render
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the same values for the one-year default correlation Corr
(
1{τi≤1}, 1{τj≤1}

)
when

using the formula in (9.1.2) with t = 1. Thus, numerically solving for θ in (9.1.2)
with the numerical values for the one-year default correlation coming from the one-
factor Gaussian copula model yields θ = 0.169 in the Clayton copula case when
Corr

(
1{τi≤1}, 1{τj≤1}

)
= 0.0812, i.e. ρ = 30% in the Gaussian copula case, and

θ = 0.44 when Corr
(
1{τi≤1}, 1{τj≤1}

)
= 0.2467, i.e. ρ = 60% in the one-factor

Gaussian copula model, see Table 6.

Table 6. The parameters and related quantities for the Clayton
copula model and the stock prices St,j where we let m = 125.

Clayton copula m = 125 θ = 0.169, θ = 0.44 F (t) = 1− e−λt λ = 0.0335 P [τi ≤ 1] = 0.0329

St,j S0 = 50 µ = 0.15 σ = 0.2 ρS = 0.25 η = 21.67 (θ = 0.169) η = 13.48 (θ = 0.44)

With the Clayton copula parameters in Table 6, we compute P
[
N

(m)
t = k

]
, and

Figure 14 plots, for m = 125, the time evolution of the distribution P
[
N

(m)
t = k

]
in log-scale where k = 0, ..., 125 and t = 1, 2, . . . , 20 days. The left panel in Figure

14 displays P
[
N

(m)
t = k

]
for the case θ = 0.169, while the right panel in Fig-

ure 14 shows P
[
N

(m)
t = k

]
for θ = 0.44. The plots in Figure 14 were generated

with the algorithms developed in [25], and in these figures we write t in days, but

the actual computations of P
[
N

(m)
t = k

]
are done with t measured in units of

years. So, for example, 2, 6 and 20 days mean that t is given by t = 2
252 ,

6
252 ,

and 20
252 in the formulas used for the computations of P

[
N

(m)
t = k

]
, where we re-

mind that 252 is the average number of trading days on the US stock market.
By comparing the left panel in Figure 14 with the left panel in Figure 4 and the
right panel in Figure 14 with the left panel in Figure 11, we clearly see that the

Clayton copula model consistently creates higher probabilities P
[
N

(m)
t = k

]
com-

pared with the one-factor Gaussian copula model, even when both copula-models
have identical marginal default distributions and the same one-year default corre-
lation Corr

(
1{τi≤1}, 1{τj≤1}

)
in both model comparisons, that is in the compari-

son θ = 0.169 (Clayton) vs. ρ = 0.3 (Gaussian) and the comparison θ = 0.44
(Clayton) vs. ρ = 0.6 (Gaussian). To further quantify the large differences in

probabilities P
[
N

(m)
t = k

]
coming from the Gaussian and Clayton copula, we dis-

play VaR99.9%

(
N

(m)
t

)
in Table 7 for α = 99.9% in both the Gaussian and Clay-

ton copula for θ = 0.169, θ = 0.44 (Clayton), and ρ = 0.3, ρ = 0.6 (Gaussian).
From Table 7, we clearly see that the tail probabilities in the Clayton copula case
are much higher than in the one-factor Gaussian copula framework with the same
default probabilities and same one-year default correlation Corr

(
1{τi≤1}, 1{τj≤1}

)
.

For example, after 5 days VaR99.9%

(
N

(m)
t

)
is twice as big as when θ = 0.169

in the Clayton copula compared to the Gaussian copula with ρ = 0.3 (giving the
same one-year default correlation Corr

(
1{τi≤1}, 1{τj≤1}

)
= 0.0812). After 20 days,

there are VaR99.9%

(
N

(m)
t

)
= 21 defaults in the Clayton model compared with
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VaR99.9%

(
N

(m)
t

)
= 13 for Gaussian case (with same default probabilities and same

one-year default correlation Corr
(
1{τi≤1}, 1{τj≤1}

)
= 0.2467).

The full time evolution at t = 1, 2, . . . , 20 of VaRα

(
N

(m)
t

)
for α = 95%, 99%,

and 99.9% are displayed in Figure 17 for N
(m)
t driven by a Clayton copula, and

Figure 19 when N
(m)
t is generated by a one-factor Gaussian copula.

Figure 14. The time evolution of the distribution P
[
N

(m)
t = k

]
in log-scale for t = 1, 2, . . . , 20 days and k = 0, ..., 125 in a Clayton
copula model with parameters as in Table 6 where m = 125. Left
panel: For θ = 0.169. Right panel: For θ = 0.44.

Next, we turn to the parameters for the stock price model. Since in this section
we will only consider a homogeneous stock portfolio, all stock prices St,1, . . . , St,J

satisfy (4.34) in Remark 4.9, so that S0,j = S0, µj = µ, σj = σ, and ρS,j = ρS for all
firms A1, . . . ,AJ in the stock portfolio. Furthermore, we let the parameters µ and σ
be same as in the CIR-model case studied in Section 7 and the one-factor Gaussian
copula model in Section 8 so that S0 = 50, µ = 0.15 = 15%, and σ = 0.2 = 20%,
and the motivation for these values are given in Subsection 7.1, see Table 6. We
let the stock correlation parameter ρS be ρS = 0.25 with the same motivation
as given in Subsection 8.1, see in Table 6. The jump parameter η is calibrated
so that condition (7.1.4) will hold, that is, η is calibrated so that the defaults
from the Clayton copula models “wipe” out the expected one-year log-growth for
a corresponding Black-Scholes model with drift µ = 15% and where m = 125.
This is the same assumption as in Section 8, and will make our stock portfolio VaR
comparisons between the Clayton and Gaussian copula default models be somewhat
“fair”. With the default and stock parameters as in Table 6, we then get for the
case θ = 0.169 that η = 21.67 via a numerical solver so E [Un,j ] =

1
η = 0.0462, while

θ = 0.44 implies that η = 13.478 so that E [Un,j ] =
1
η = 0.0742, see Table 6.

9.2. VaR over a 20-day period for a large homogeneous stock portfolio
where jumps in stocks are due to default times driven by a Clayton
copula model. In this subsection, we study Value-at-Risk for a large homogeneous
portfolio of stocks as function of time over a 20-day period in time steps of one
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Table 7. The expected number of defaults E
[
N

(m)
t

]
and

VaR99.9%

(
N

(m)
t

)
for t = 1, 5, 10, 15, 20 days when individual de-

fault times are driven by a one-factor Gaussian copula and a Clay-
ton copula model with parameters as in Table 4 and Table 6 where
m = 125. Both copula models have the same marginal default
distributions and same one-year default correlations for each pair
ρ = 0.3 vs. θ = 0.169 and ρ = 0.6 vs. θ = 0.44.

t (in days) 1 5 10 15 20

E
[
N

(m)
t

]
0.0166 0.0829 0.1658 0.2487 0.3314

VaR99.9%

(
N

(m)
t

)
Gaussian, ρ = 0.3 2 5 8 11 13

VaR99.9%

(
N

(m)
t

)
Clayton, θ = 0.169 3 10 14 18 21

VaR99.9%

(
N

(m)
t

)
Gaussian, ρ = 0.6 3 13 21 28 34

VaR99.9%

(
N

(m)
t

)
Clayton, θ = 0.44 3 21 34 43 49

trading day. The stock prices in the portfolio have jumps occurring at default times
τ1, τ2 . . . , τm which are exchangeable, conditionally independent, and are driven
by a Clayton copula model as discussed in Subsection 9.1 and with parameters
as in Table 6. We study VaR for a portfolio of J = 150 stocks by using the
LPA approximation formulas in Theorem 5.2, and we do our VaR studies for two
different levels of the parameter θ in the Clayton copula model. First, in the left
panel of Figure 15 we display the time evolution of Value-at-Risk in % of V0 for
t = 1, 2, . . . , 20 days in the case when St,j has jumps coming from default times
in a Clayton copula model with parameters as in Table 6, where the θ-parameter
is set to θ = 0.169 and η = 21.67. The right panel in Figure 15 displays the
same quantities as in the left panel, but now with Clayton parameter θ = 0.44 and
where the stock-jump parameter is η = 13.48 so that condition (7.1.4) holds, just
as in the left panel of Figure 15. Comparing the VaR-curves in the left and right
panels in Figure 15, we see that the 99% and 99.9% VaR plots for θ = 0.44 in the
right panel are much higher than the corresponding curves for θ = 0.169 in the
left panel where η = 13.48, with the rest of the parameters the same as in the left
panel. For example, looking at the red line (99.9% VaR) in the right panel with
θ = 0.44, we see that after 20 days there is a 0.1% probability of having a loss in
the portfolio which is 97% or more than the initial portfolio value V0 at time t = 0.
However, when θ = 0.169 in the left panel, there is for the same time, that is, 20
days, a 0.1% probability of having a loss in the portfolio which is 59.9% or more
than the initial portfolio value V0 at time t = 0. The big differences between the
curves for the same α-levels in the two panels are due to the fact that a Clayton

parameter θ = 0.44 will create probabilities P
[
N

(m)
t = k

]
that are substantially

larger for lower k-values compared to the corresponding probabilities in the case
when θ = 0.169, which is clearly seen when comparing the left and right panels in

Figure 14. From Figure 15, we also observe that the probabilities P
[
N

(m)
t = k

]
in
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the Clayton copula model are higher than in the one-factor Gaussian copula model
displayed in the left panel of Figure 4 with ρ = 0.3 and the left subplot of Figure
11 with ρ = 0.6, with same marginal default distributions and the same one-year
default correlation Corr

(
1{τi≤1}, 1{τj≤1}

)
as in the Clayton copula model (θ = 0.169

vs. ρ = 0.6 and θ = 0.44 vs. ρ = 0.3), and this explains the higher VaR values in
Figure 15 compared to Figure 9.
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Figure 15. The time evolution of Value-at-Risk (in % of V0) com-
puted with the LPA formula in Theorem 5.2 for t = 1, 2, . . . , 20
days of a homogeneous portfolio with J = 150 stocks, which has
jumps in all stock prices at default times driven by a Clayton cop-
ula model with parameters as in Table 6 where m = 125. In both
panels, condition (7.1.4) holds, i.e. E [ST,j ] = S0. Left panel: For
θ = 0.169. Right panel: For θ = 0.44.

The curves for α = 95% and 99% VaR plots in Figure 15 show a non-smooth
pattern which follows from the same arguments given in Subsection 8.3 regarding
the plots in the left and right panels of Figure 9 compared with the middle and
right panels in Figure 19 on p.66. Hence, the non-smoothness in the left and right
panels of Figure 15 follows the same time pattern as in the left and right panels
of Figure 17, which displays the time evolution of Value-at-Risk for the default

counting process N
(m)
t driven by a Clayton copula model with parameters as in

Table 6 where m = 125.
Next, in the two panels in Figure 16 we display the time evolution of the relative

difference of Value-at-Risk (in %) for t = 1, 2, . . . , 20 days between a stock portfolio
with jumps as in Figure 15 using the LPA-formula (5.5) in Theorem 5.2 and the
standard Black-Scholes case, i.e. without jumps, given by in the right panel of
Figure 11 computed with the Black-Scholes LPA-formula in Equation (5.30) with
parameters as in Table 6. As can be seen in Figure 16, the differences between the
jump vs non-jump VaR-cases are huge. For example, the 99.9% VaR for θ = 0.44 in
the right panel is for some time points around 4000% higher than the corresponding
99.9% VaR values in the Black-Scholes portfolio case. In our VaR computations
in Figure 16, we use the same truncation techniques for the LPA portfolio loss
distributions as discussed in Subsection 7.3.
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Figure 16. The time evolution of the relative difference of Value-
at-Risk (in %) for t = 1, 2, . . . , 20 days between a stock portfolio
with jumps as in Figure 15 using the LPA formula in Theorem
5.2 and the standard Black-Scholes case, i.e. without jumps, given
by right panel in Figure 11. The relative difference is measured
with respect to the Black-Scholes case. All parameters for the
jump-model are as in Figure 15. Left panel: For θ = 0.169 and
η = 21.67. Right panel: For θ = 0.44 and η = 13.48.
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Figure 17. The time evolution of Value-at-Risk at t = 1, 2, . . . , 20

days for the default counting process N
(m)
t driven by a Clayton

copula model with parameters as in Table 6 where m = 125. Left
panel: For θ = 0.169. Right panel: For θ = 0.44.

Finally, we can use Figure 16 together with Figure 10 to compare the VaR in
stock portfolios with jumps at defaults coming from a Clayton copula compared
to corresponding VaR values when jumps are generated by defaults coming from a
one-factor Gaussian copula model. For example, from the left panel in Figure 10
we see that, in a Gaussian copula model with ρ = 0.3, the relative difference will
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never exceed 1300% of the 99.9% VaR values in the Black-Scholes portfolio case in
the first 20 trading days, while for the Clayton copula with θ = 0.169 (which has
the same one-year default correlation as the Gaussian copula model with ρ = 0.3),
we see from the left panel in Figure 16 that the relative difference will constantly
exceed 1800% of the 99.9% VaR values in the Black-Scholes portfolio from the fourth
trading day up to at least trading day 20. The differences are even higher when we
compare the Gaussian copula case with ρ = 0.6 vs. the Clayton copula model with
θ = 0.44, see the right panel of Figure 10 compared with right panel in Figure 16.

10. Numerical comparison against Kou model with only negative jumps.
The numerical studies in Sections 7, 8, and 9 considered VaR-values for stock port-
folios in the case where the jumps in the stock prices were triggered by defaults from
an exogenous group of m entities C1, . . . ,Cm for different credit portfolio default
models. Then, in Sections 7, 8, and 9 we also compared these jump-at-default stock
portfolio VaR values with corresponding VaR metrics coming from an equity model
without jumps, that is, a Black-Scholes portfolio setting under the real probability
measure. However, as mentioned in Section 6, comparing our jump-at-default stock
price model with only a non-jump stock model will in our view not be fully fair. We
believe it is equally important to compare our stock price model containing jumps
at defaults with other equity models that includes jumps in the stock price driven
by, e.g., a Poisson process. Therefore, in this section we will compute VaR for a
stock portfolio model derived from the Kou model, [32], restricted to only having
negative jumps, as outlined in Section 6, and then compare these VaR-values with
the corresponding VaR-metrics coming from our jump-at-defaults model for a one-
factor Gaussian copula model as outlined in Section 5. In this section, we only
focus on homogeneous stock portfolios, just as in Subsection 8.3 for the one-factor
Gaussian copula model.

First, in Subsection 10.1 we briefly discus how we choose the parameters in
the restricted version of the Kou model (6.1) used for our VaR-studies. Then, in
Subsection 10.2 we consider a large portfolio with J = 150 stocks and use the
LPA (large portfolio approximation) formula (6.5) given in Corollary 6.1 for the
Kou model (6.1) to compute VaR for this equity portfolio with parameters as in
Subsection 10.1. We also compare the stock portfolio VaR-values in the Kou model
with the corresponding VaR-metrics in the stock price model with jumps at defaults
generated by a one-factor Gaussian copula model.

10.1. The parameters in the Kou model with only negative jumps. We will
consider a homogeneous stock portfolio so that condition (4.34) is satisfied, that is,
S0,j = S0, µj = µ, σj = µ, and ρS,j = ρS for all firms A1, . . . ,AJ , which implies

that the stock prices S
(κ)
t,1 , S

(κ)
t,2 , . . . , S

(κ)
t,J in the Kou model (6.1) are exchangeable.

Furthermore, the numerical values of S
(κ)
0,j = S0, the drift µ, volatility σ, and “stock-

correlation” ρS are chosen to be the same as in one-factor Gaussian copula model
used in Subsection 8.2, and are given Table 4, see also in Table 8 below. So, what is
left to determine is the numerical value of the parameters λκ and ηκ in the restricted

version of the Kou model S
(κ)
t,j given by (6.1). Here we remind that λκ is the rate

for the Poisson process driving the jumps in S
(κ)
t,j , and ηκ is the parameter for the

downward exponentially distributed jump-size in S
(κ)
t,j as stated by (6.1). To find

λκ and ηκ, we will use the method outlined in Section 6 and given by (6.6) or
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(7.1.4), that is, E
[
S
(κ)
T,j

]
= S0 = E [ST,j ] and E [NT̃ ] = E

[
N

(m)

T̃

]
for two arbitrary

fixed time points T and T̃ , but where here we let T = T̃ = 1 year. Recall that

the condition E
[
S
(κ)
T,j

]
= S0 implies, just as in (2.32), that the downward jumps

in the Kou model S
(κ)
t at the jump times of the Poisson process Nt “wipe” out

the expected log-growth for a corresponding Black-Scholes model with drift µ up to

time T , see also Equation (6.4). Furthermore, we observe that E [NT̃ ] = E
[
N

(m)

T̃

]
means that the expected number of jumps by the point processes Nt and N

(m)
t

will be the same up to time T̃ , which for N
(m)
t is the same as saying that the

expected number of defaults in the group C1, . . . ,Cm up to time T̃ will be given
by E [NT̃ ] = λκT̃ . As discussed in Section 6, if the default times τ1, τ2 . . . , τm for
C1, . . . ,Cm are exchangeable with default distribution F (t) = P [τi ≤ t], then the

condition E [NT̃ ] = E
[
N

(m)

T̃

]
can be reformulated as λκT̃ = mF (T̃ ). Furthermore,

if the exchangeable default times τ1, τ2 . . . , τm have constant default intensity λ so
that F (t) = P [τi ≤ t] = 1−e−λt, then Equations (6.6) - (6.10) in Section 6 together

with T̃ = 1 year renders that λκ and ηκ are given by (see also (6.10))

λκ = m
(
1− e−λ

)
and ηκ =

λκ
µ

− 1 . (10.1.1)

Note that the calibration of λκ and ηκ in (10.1.1) will not involve any of the depen-
dence parameters describing the default times in the stock price model with jumps

at defaults generated by N
(m)
t . Hence, the condition (10.1.1) can be used for any

exchangeable factor copula model or intensity based model that will be compared
with the Kou model (6.1). In this section, we will only use the one-factor Gaussian
copula model in our comparison with the Kou model (6.1), and we will use two
different values of the default correlation parameter ρ, namely ρ = 0.3 and ρ = 0.6,
just as in Subsection 8.3, see Table 8. The stock-jump parameter η in the Gauss-
ian copula case are same as in Subsection 8.3, that is, η = 21.98 for ρ = 0.3, and
η = 13.92 when ρ = 0.6, see also Subsection 8.3.

Table 8. The parameters and related quantities for the one-factor

Gaussian copula model and the stock prices S
(κ)
t,j in Kou model (6.1)

with only negative jumps calibrated via (10.1.1).

Gauss copula m = 125 ρ = 0.3, ρ = 0.6 F (t) = 1− e−λt λ = 0.0335 P [τi ≤ 1] = 0.0329

Kou model S
(κ)
t,j S0 = 50 µ = 0.15 σ = 0.2 ρS = 0.25 λκ = 4.1125 ηκ = 26.4167

10.2. VaR over a 20-day period for a large homogeneous stock portfolio
where jumps in stocks are due to Kou model with only negative jumps.
In this subsection, we study Value-at-Risk for a large homogeneous portfolio of
stocks as a function of time over a 20-day period in time steps of one trading day
where the stock prices in the portfolio are modeled as in Equation (6.1) in Section
6, which is similar to the Kou model, [32], restricted to only having negative jumps.

Thus, the stock prices in S
(κ)
t,j in (6.1) will be the same as in [32], but here with

only negative jumps and where we extend [32] to a portfolio setting so that S
(κ)
t,j

are correlated via a Brownian motion (a factor process) Wt,0 and a Poisson process
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Nt that is the same for all stocks in the portfolio and with parameters as in Table
8. In the modified Kou model (6.1), we then study VaR for a portfolio of J = 150
stocks by using the LPA approximation formula in Corollary 6.1 and also compare
these VaR values with corresponding VaR values in a portfolio with stocks which
has jumps in all stock prices at default times driven by a one-factor Gaussian copula

model, that is, Definition 4.1 where N
(m)
t is the counting process for a one-factor

Gaussian copula model with m entities (see also in Subsection 8.3).
The left panel in Figure 18 displays the time evolution of Value-at-Risk (in %

of V0) computed with the LPA formula in Corollary 6.1 for t = 1, 2, . . . , 20 days
of a homogeneous portfolio with J = 150 stocks in the Kou model (6.1) with only
negative jumps and parameters as in Table 8. The middle and right panels in
Figure 18 display the time evolution of the relative difference of Value-at-Risk (in
%) for t = 1, 2, . . . , 20 days between a stock portfolio modeled by the restricted
Kou model (6.1) given in the left panel and a homogeneous portfolio with J = 150
stocks which has jumps in all stock prices at default times driven by a one-factor
Gaussian copula model with m = 125 and parameters as in Table 4 with default-
correlation parameter ρ = 30% (middle panel) and ρ = 60% (right panel). The
relative difference in Figure 18 is measured with respect to the Kou model (6.1), and
the VaR curves of the one-factor Gaussian copula model are displayed in Figure 9.
Thus, the middle and right panels in Figure 18 are obtained by taking the difference
of the graphs in the left panel of Figure 18 and the corresponding graphs in the
left and right plots in Figure 9 divided by the graphs in left panel of Figure 18
and then multiplied by 100 to express the relative difference in units of percent.
Recall from Subsection 10.1 that the parameters in Figure 18 are chosen so that

E
[
S
(κ)
T,j

]
= S0 = E [ST,j ] and E [NT ] = E

[
N

(m)
T

]
for T = 1 year, and this choice of

the parameters in the restricted Kou model (6.1) will hopefully make the comparison

with the jump-at-default model in Definition 4.1 where N
(m)
t is driven by a one-

factor Gaussian copula model somewhat financially “fair”.
From the middle and right panels in Figure 18, we clearly see that the stock

portfolio VaR values coming from the one-factor Gaussian copula model are much
higher for the 99% and 99.9% cases the first 20 days compared to the correspond-
ing VaR numbers in the restricted Kou portfolio model (6.1), even though all the
portfolios have the same expected values for the individual stock prices after one
year, and the same expected number of jumps after one year. For example, in the
right panel in Figure 18, we see that after 9 trading days, the 99.9% VaR coming
from a jump-at-default stock model driven by a one-factor Gaussian copula model
with ρ = 60% will be 830% bigger compared with the corresponding Kou portfolio
model (6.1) on the same day. Similarly, in the in the middle panel of Figure 18, we
see that after 20 trading days the 99% VaR coming in the form of a jump-at-default
stock model driven by a one-factor Gaussian copula model with ρ = 30% will be
302% bigger compared with the corresponding Kou portfolio model (6.1) on the
same day.

As seen in Figure 19, the main reason for the significantly bigger stock portfolio

VaR values in the jump-at-default equity model in Definition 4.1 where N
(m)
t is

driven by a one-factor Gaussian copula compared to the Kou portfolio model (6.1)
with jumps at a Poisson process Nt are due to the much larger tail behavior of

N
(m)
t compared with the tail characteristics of Nt even though E [NT ] = E

[
N

(m)
T

]
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Figure 18. Left panel: The time evolution of Value-at-Risk (in
% of V0) computed with the LPA formula in Corollary 6.1 for t =
1, 2, . . . , 20 days of a homogeneous portfolio with J = 150 stocks in
the Kou model (6.1) with only negative jumps and parameters as
in Table 8. Middle and right panel: The time evolution of the
relative difference of Value-at-Risk (in %) for t = 1, 2, . . . , 20 days
between a stock portfolio with jumps as in the Kou model in the left
panel and Figure 9, which displays VaR for a portfolio with stocks
which has jumps in all stock prices at default times driven by a one-
factor Gaussian copula model with m = 125 and parameters as in
Table 4 with default-correlation parameter ρ = 30% (middle panel)
and ρ = 60% (right panel). The relative difference is measured
with respect to the Kou model (6.1). In all panels, it holds that

E
[
S
(κ)
T,j

]
= S0 = E [ST,j ] and E [NT ] = E

[
N

(m)
T

]
for T = 1 year.
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Figure 19. The time evolution of Value-at-Risk at t = 1, 2, . . . , 20
days for Poisson process Nt with intensity 4.113 (left panel) and

default counting process N
(m)
t driven by a one-factor Gaussian cop-

ula model with m = 125 and parameters as in Table 4 and default-
correlation parameter ρ = 30% (middle panel) and ρ = 60%
(right panel).

for T = 1 year. The left panel in Figure 19 displays the time evolution of Value-at-
Risk at t = 1, 2, . . . , 20 days for a Poisson process Nt with intensity 4.113 (so that

E [NT ] = E
[
N

(m)
T

]
for T = 1 year), while the middle and right panels in Figure
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19 plot the corresponding VaR values coming from default counting process N
(m)
t

driven by a one-factor Gaussian copula model with m = 125 and parameters as in
Table 4 and default-correlation parameter ρ = 30% (middle panel) and ρ = 60%
(right panel). In Figure 19, we see that VaR99.9% (Nt) for the Poisson process Nt

will never exceed 3 jumps the first 20 trading days, while for N
(m)
t driven by the one-

factor Gaussian copula model, the VaR99.9%

(
N

(m)
t

)
will steadily increase up to 13

jumps, i.e. 13 defaults, the first 20 trading days when ρ = 30% and up to 34 jumps,
i.e. 34 defaults, when ρ = 60% during the same period. These are huge differences

compared to the Poisson model Nt, even though it holds that E [NT ] = E
[
N

(m)
T

]
for T = 1 year and is also explaining the large differences for the corresponding
stock portfolio VaR values displayed in the middle and right panels of Figure 18.
Of course, the differences in the middle and right panels in Figure 18 will be even
higher if ρ is increased, or if we use a Clayton copula for the default times that

create N
(m)
t with, e.g., parameters θ = 0.169 or θ = 0.44, as seen in Section 9.

Appendix A. Proof of Proposition 2.6, Theorem 2.14, Corollary 4.11
and Corollary 6.1. In this appendix, we first give a proof of Proposition 2.6 in
Subsection A.1, and then a proof of Theorem 2.14 in Subsection A.2. A proof of
Corollary 4.11 is given in Subsection A.3, and finally Corollary 6.1 is proved in
Subsection A.4.

A.1. Proof of Proposition 2.6.

Proof. Let FW
t = σ(Ws; s ≤ t) be the filtration generated by the Brownian motion

Wt and let Hi
t = σ

(
1{τi≤s}; s ≤ t

)
be the filtration generated by each default time

τi, and define the sigma-algebra V as V = σ
(
Ṽ1, . . . , Ṽm

)
. Next, we define the full

filtration Ft as

Ft = FW
t ∨

m∨
i=1

Hi
t ∨ V . (A.1.1)

Then, Yt in Definition 2.1 is a semimartingale with respect to the filtration Ft. To
see this, first note that sinceWt is a Brownian motion, it is a martingale with respect
to its own filtration FW

t . But, due to Definition 2.1 the process Wt is independent

of τ1, τ2 . . . , τm and Ṽ1, . . . , Ṽm, so Wt will also be a martingale with respect to the
full filtration Ft given by (A.1.1). Hence, from (2.2) we see that Yt can be written
as a sum of local martingale with respect to Ft, that is, σWt and a finite variation
process, i.e. µt +

∑m
i=1 Ṽi1{τi≤t} since Ṽi have bounded expected values. From

Theorem 1 on p.102 in [45], we therefore conclude that Yt is a semimartingale with
respect to the filtration Ft defined as in (A.1.1). Next, we note that the differential
form (2.1) can be rewritten as

St = S0 +

∫ t

0

Ss−dYs (A.1.2)

and letting St be given by St = S0S̃t, then (A.1.2) can be rewritten as

S0S̃t = S0

(
1 +

∫ t

0

S̃s−dYs

)
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that is,

S̃t = 1 +

∫ t

0

S̃s−dYs . (A.1.3)

Hence, if we can find a solution to S̃t in the SDE (A.1.3), then a solution to St in

(A.1.2) is obtained from the relation St = S0S̃t. Thus, for notational convenience
we will without loss of generality assume that S0 = 1 and drop the tilde notation
in (A.1.3) so that we have

St = 1 +

∫ t

0

Ss−dYs . (A.1.4)

Next, from Theorem 37 on p.84 in [45], we conclude that St in (A.1.4) is a semi-
martingale given by

St = exp

(
Yt −

1

2
[Y, Y ]

c
t

) ∏
0<s≤t

(1 + ∆Ys) exp (−∆Ys) (A.1.5)

where, as usual, [Y, Y ]
c
t denotes the path-by-path continuous part of the quadratic

variation [Y, Y ]t, see p.70 in [45]. Since µt+ σWt is a continuous process, we have

Yt = µt+ σWt +

m∑
i=1

Ṽi1{τi≤t} = µt+ σWt +
∑

0<s≤t

∆Ys (A.1.6)

so that

exp

(
Yt −

1

2
[Y, Y ]

c
t

)
= exp

µt+ σWt −
1

2
[Y, Y ]

c
t +

∑
0<s≤t

∆Ys

 . (A.1.7)

Furthermore, note that

∏
0<s≤t

(1 + ∆Ys) exp (−∆Ys) = exp

−
∑

0<s≤t

∆Ys

 ∏
0<s≤t

(1 + ∆Ys) (A.1.8)

and from the definition of a Brownian motion and since [Y, Y ]
c
t is the continuous

part of the quadratic variation [Y, Y ]t, we get

[Y, Y ]
c
t = σ2t . (A.1.9)

So, (A.1.7)-(A.1.9) in (A.1.5) then gives

St = exp

((
µ− 1

2
σ2

)
t+ σWt

) ∏
0<s≤t

(1 + ∆Ys) (A.1.10)

and in view of (2.2) we have∏
0<s≤t

(1 + ∆Ys) =

m∏
i=1

(
1 + Ṽi1{τi≤t}

)
so that (A.1.10) can be rewritten as

St = exp

((
µ− 1

2
σ2

)
t+ σWt

) m∏
i=1

(
1 + Ṽi1{τi≤t}

)
. (A.1.11)
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Recall that we set S0 = 1, but from the arguments leading to (A.1.3), we can let
S0 be an arbitrary positive constant, and using this in (A.1.11) finally gives

St = S0 exp

((
µ− 1

2
σ2

)
t+ σWt

) m∏
i=1

(
1 + Ṽi1{τi≤t}

)
which proves (2.3), and this concludes the proposition.

A.2. Proof of Theorem 2.14.

Proof. We start with P [St ≤ x] and note that

P [St ≤ x] =

m∑
k=0

P
[
St ≤ x |N (m)

t = k
]
P
[
N

(m)
t = k

]
(A.2.1)

where Corollary 2.13 implies that

P
[
St ≤ x |N (m)

t = k
]

= P

[
S0 exp

((
µ− 1

2
σ2

)
t+ σWt −

k∑
n=1

Un

)∣∣∣∣∣N (m)
t = k

]
. (A.2.2)

From Definition 2.1, we know that Wt is independent of the default times τ1, τ2 . . . ,
τm, and from Definition 2.10, we also know that the sequence U1, . . . , Um is inde-

pendent of τ1, τ2 . . . , τm. Thus, the process N
(m)
t is independent of both Wt and

U1, . . . , Um, which in (A.2.2) gives

P

[
S0 exp

((
µ− 1

2
σ2

)
t+ σWt −

k∑
n=1

Un

)
≤ x

∣∣∣∣∣N (m)
t = k

]

= P

[
S0 exp

((
µ− 1

2
σ2

)
t+ σWt −

k∑
n=1

Un

)
≤ x

] (A.2.3)

and the right-hand side of (A.2.3) can be simplified to

P

[
S0 exp

((
µ− 1

2
σ2

)
t+ σWt −

k∑
n=1

Un

)
≤ x

]

= P

[
σWt −

k∑
n=1

Un ≤ ln
x

S0
−
(
µ− 1

2
σ2

)
t

]
.

(A.2.4)

Let X and Gk be independent random variables, where X is a standard normal

random variable and Gk is a gamma-distributed random variable so that Gk
d
=

Gamma(k, η) where, k ≥ 1 is an integer. Then, we note that

σWt
d
= σ

√
tX and

k∑
n=1

Un
d
= Gk

d
= Gamma(k, η) (A.2.5)

where the last equality follows from the fact that a sum of k independent ex-
ponentially distributed random variables all with parameters η has distribution
Gamma(k, η). From Definition 2.10, we know that U1, . . . , Um are independent of
Wt, which motivates why X and Gk in (A.2.5) are independent random variables.
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Next, let U and V be independent random variables with distributions FU (u) and
FV (v). From standard probability theory, we know that

P [U + V ≤ z] =

∫
FU (z − v)dFV (v) (A.2.6)

see Theorem 2.1.1 on p.47 in [15]. If we define U and V as

U = σ
√
tX and V = −Gk (A.2.7)

where X and Gk are the same as in (A.2.5), then we have that

FU (u) = Φ

(
u

σ
√
t

)
and FV (v) = 1− FGk

(−v) where v ∈ (−∞, 0]

(A.2.8)
so that

dFV (v) = fGk
(−v)dv for v ∈ (−∞, 0] (A.2.9)

where FGk
(x) and fGk

(x) are the distribution function and density function to

Gk
d
= Gamma(k, η), and as usual Φ(x) is the distribution function to a standard

normal random variable. Now, (A.2.7), (A.2.8) and (A.2.9), in (A.2.6) then renders
as

P
[
σ
√
tX −Gk ≤ z

]
=

∫ 0

−∞
Φ

(
z − v

σ
√
t

)
fGk

(−v)dv (A.2.10)

and by making the change of variables y = −v in (A.2.10), the integral on the
right-hand side of (A.2.10) can be rewritten as

P
[
σ
√
tX −Gk ≤ z

]
=

∫ ∞

0

Φ

(
z + y

σ
√
t

)
fGk

(y)dy . (A.2.11)

By letting z = ln x
S0

−
(
µ− 1

2σ
2
)
and fGk

(y) = ηe−ηy(ηy)k−1

(k−1)! in (A.2.11), together

with the relation (A.2.5), we get for any integer k ≥ 1 that the right-hand side of
(A.2.4) can be written as

P

[
σWt −

k∑
n=1

Un ≤ ln
x

S0
−
(
µ− 1

2
σ2

)
t

]

=

∫ ∞

0

Φ

(
ln x

S0
−
(
µ− 1

2σ
2
)
t+ y

σ
√
t

)
ηe−ηy (ηy)

k−1

(k − 1)!
dy . (A.2.12)

By combining (A.2.3) and (A.2.4) with (A.2.12), we get for for any integer k ≥ 1
that

P

[
S0 exp

((
µ− 1

2
σ2

)
t+ σWt −

k∑
n=1

Un

)
≤ x

∣∣∣∣∣N (m)
t = k

]
= Ψk (x, t, µ, σ, S0, η) (A.2.13)

where the mappings Ψk (x, t, µ, σ, u, η) for u > 0 are defined as

Ψk (x, t, µ, σ, u, η)

=

∫ ∞

0

Φ

(
ln x

u −
(
µ− 1

2σ
2
)
t+ y

σ
√
t

)
ηe−ηy (ηy)

k−1

(k − 1)!
dy for integers k ≥ 1 .

(A.2.14)
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When k = 0, we have no defaults, and thus there are no jump-terms in the expo-
nential expression of (A.2.3), implying that (A.2.3) reduces to

P
[
S0 exp

((
µ− 1

2
σ2

)
t+ σWt

)
≤ x

∣∣∣∣N (m)
t = 0

]
= Ψ0 (x, t, µ, σ, S0, η) (A.2.15)

where Ψ0 (x, t, µ, σ, u, η) for u > 0 is defined as

Ψ0 (x, t, µ, σ, u, η) = P
[
u · exp

((
µ− 1

2
σ2

)
t+ σWt

)
≤ x

]
= Φ

(
ln x

u −
(
µ− 1

2σ
2
)
t

σ
√
t

)
. (A.2.16)

Thus, (A.2.13) - (A.2.16) together with (A.2.1) and (A.2.2) implies that

P [St ≤ x] =

m∑
k=0

Ψk (x, t, µ, σ, S0, η)P
[
N

(m)
t = k

]
which proves (2.18), (2.19), and (2.20). Next, consider the loss distribution

F
L

(S)
t

(x) = P
[
L
(S)
t ≤ x

]
. From the definition of L

(S)
t in (4.9), after some trivial

computations, we get that

F
L

(S)
t

(x) = P
[
L
(S)
t ≤ x

]
= 1− P

[
St

S0
≤ 1− x

S0

]
(A.2.17)

and we can therefore reuse the formula for P [St ≤ x] in (2.18) by letting S0 = 1 in
(2.18), and replace x in (2.18) with 1− x

S0
, rendering that

P
[
L
(S)
t ≤ x

]
= 1−

m∑
k=0

Ψk

(
1− x

S0
, t, µ, σ, 1, η

)
P
[
N

(m)
t = k

]
which proves (2.18). Next, we prove the expressions for the density fSt (x) to St

and first note that fSt
(x) = d

dxP [St ≤ x], so (2.18) then implies that

fSt
(x) =

m∑
k=0

∂

∂x
Ψk (x, t, µ, σ, S0, η)P

[
N

(m)
t = k

]
. (A.2.18)

Next, we define ψk (x, t, µ, σ, S0, η) as

ψk (x, t, µ, σ, S0, η) =
∂

∂x
Ψk (x, t, µ, σ, S0, η) (A.2.19)

and for k ≥ 1 with x > 0, t > 0, we then get from (A.2.14) and (A.2.19) and some
elementary computations that

ψk (x, t, µ, σ, S0, η)

=
1

xσ
√
t

∫ ∞

0

φ

(
ln x

S0
−
(
µ− 1

2σ
2
)
t+ y

σ
√
t

)
ηe−ηy (ηy)

k−1

(k − 1)!
dy for 0 < k ≤ m

(A.2.20)

where φ(x) = 1√
2π
e−

x2

2 is the density of a standard normal random variable. In the

same way, (A.2.16) and (A.2.19) imply that ψ0 (x, t, µ, σ, S0, η) for S0 > 0, x > 0,
and t > 0 is given by

ψ0 (x, t, µ, σ, S0, η) =
1

xσ
√
t
φ

(
ln x

S0
−
(
µ− 1

2σ
2
)
t

σ
√
t

)
. (A.2.21)
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Hence, (A.2.19) with (A.2.20)-(A.2.21) inserted into (A.2.18) proves (2.22) - (2.24).
Finally, we note that

E [St] =

m∑
k=0

E
[
St |N (m)

t = k
]
P
[
N

(m)
t = k

]
(A.2.22)

where Corollary 2.13 implies that

E
[
St |N (m)

t = k
]
= E

[
S0 exp

((
µ− 1

2
σ2

)
t+ σWt −

k∑
n=1

Un

)∣∣∣∣∣N (m)
t = k

]
.

(A.2.23)
By using exactly the same arguments which led to the right-hand side in (A.2.3),
we have that

E

[
S0 exp

((
µ− 1

2
σ2

)
t+ σWt −

k∑
n=1

Un

)∣∣∣∣∣N (m)
t = k

]

= E

[
S0 exp

((
µ− 1

2
σ2

)
t+ σWt −

k∑
n=1

Un

)]
. (A.2.24)

Furthermore, since Wt are independent of the jump terms U1, . . . , Um we get that
the right-hand side of (A.2.23) can be rewritten as

E

[
S0 exp

((
µ− 1

2
σ2

)
t+ σWt −

k∑
n=1

Un

)]

= E
[
S0 exp

((
µ− 1

2
σ2

)
t+ σWt

)]
E
[
e−

∑k
n=1 Un

]
. (A.2.25)

From standard Black-Scholes theory, we have

E
[
S0 exp

((
µ− 1

2
σ2

)
t+ σWt

)]
= S0e

µt (A.2.26)

and from (A.2.5), we also note that

E
[
e−

∑k
n=1 Un

]
= E

[
e−GK

]
= LGK

(1) =

(
η

η + 1

)k

(A.2.27)

where LGK
(s) is the Laplace transform to Gk

d
= Gamma(k, η) with k ≥ 1 and η > 0

obtained from the moment generating function MGK
(s) via the relation LGK

(s) =

MGK
(−s), and where standard probability theory gives us that LGK

(s) =
(

η
η+s

)k
for s > −η. Hence, combining (A.2.24)-(A.2.27) and inserting these relations in
(A.2.23) for integers k = 1, 2, . . . ,m, we get

E
[
St |N (m)

t = k
]
= S0e

µt

(
η

η + 1

)k

(A.2.28)

and since
(

η
η+1

)0
= 1, then (A.2.28) will also hold for k = 0. Thus, (A.2.28) for

k = 0, 1, . . . ,m in (A.2.22) implies that

E [St] = S0e
µt

m∑
k=0

(
η

η + 1

)k

P
[
N

(m)
t = k

]
= S0e

µtE

( η

η + 1

)N
(m)
t


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which proves (2.17). Finally, by using (A.2.28), we have

E
[
St |N (m)

t

]
=

m∑
k=0

E
[
St |N (m)

t = k
]
1{

N
(m)
t =k

}

=

m∑
k=0

S0e
µt

(
η

η + 1

)k

1{
N

(m)
t =k

}

= S0e
µt

(
η

η + 1

)N
(m)
t

which together with (A.2.28) proves (2.16), and this concludes the theorem.

A.3. Proof of Corollary 4.11.

Proof. From (4.21) in Theorem 4.8, we have

FL∆V
t

(x) = P
[
L∆V
t ≤ x

]
= 1− P

 J∑
j=1

Xt,j ≤ − x

S0

 1− P

 J∑
j=1

Zt,j ≤ − x

S0


(A.3.1)

since there are now jumps, where Zt,j is defined as in (4.23) in Theorem 4.8. Now,
(4.33) and (4.25) in Theorem 4.8 with some elementary computations together with
the standard normal symmetry property 1− Φ(−y) = Φ(y) then imply that

P
[
L∆V
t ≤ x

]
= Φ


x
S0

+
∑J

j=1

(
µj − 1

2σ
2
j

)
t√

t

((∑J
j=1 σjρS,j

)2
+
∑J

j=1 σ
2
j

(
1− ρ2S,j

))


where Φ (x) is the distribution function of a standard normal random variable,
and this proves (4.40). Furthermore, from the definition in (4.37), we know that
VaRα

(
L∆V
t

)
= F−1

L∆V
t

(α), so this with the distribution of FL∆V
t

(x) in (4.40) will

then after some trivial computations yield that

VaRα

(
L∆V
t

)
= S0


√√√√√√t


 J∑

j=1

σjρS,j

2

+

J∑
j=1

σ2
j

(
1− ρ2S,j

)Φ−1 (α)−
J∑

j=1

(
µj −

1

2
σ2
j

)
t


which proves (4.41). Finally, if we set the portfolio weights to wj = 1 for all

companies A1, . . . ,AJ , and if their stock prices S
(BS)
t,1 , . . . , S

(BS)
t,J also satisfy (4.34)

in Remark 4.9, we get an equally value-weighted portfolio where S0,j = S0, µj =
µ, σj = σ, and ρS,j = ρS for all firms A1, . . . ,AJ , and using this in (4.40)-(4.41)
with some computations gives us expressions (4.42)-(4.43), which concludes the
corollary.
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A.4. Proof of Corollary 6.1.

Proof. First, identical computations to those that lead to (A.2.28) in the proof of
Theorem 2.14 gives us

E
[
S
(κ)
t,j

∣∣∣Nt = k
]
= S0,j e

µt

(
ηκ

ηκ + 1

)k

. (A.4.1)

Furthermore, using (A.4.1) with similar computations as in the proof of Theorem
2.14 then gives us that

E
[
S
(κ)
t,j

∣∣∣Nt

]
=

∞∑
k=0

E
[
S
(κ)
t,j

∣∣∣Nt = k
]
1{Nt=k}

=

∞∑
k=0

S0,je
µjt

(
ηκ

ηκ + 1

)k

1{Nt=k}

= S0,je
µjt

(
ηκ

ηκ + 1

)Nt

which, together with (A.4.1), proves (6.3). Next, note that

E
[
S
(κ)
t,j

]
=

∞∑
k=0

E
[
S
(κ)
t,j

∣∣∣Nt = k
]
P [Nt = k] (A.4.2)

so inserting (A.4.1) into (A.4.2) together with P [Nt = k] = e−λκt (λκt)
k

k! then gives
that

E
[
S
(κ)
t,j

]
=

∞∑
k=0

S0,j e
µt

(
ηκ

ηκ + 1

)k

e−λκt
(λκt)

k

k!

= S0,j e
(µ−λκ)t

∞∑
k=0

(
ηκλκt

ηκ + 1

)k
1

k!

= S0,j exp ((µ− λκ) t) exp

(
ηκλκt

ηκ + 1

)

= S0,j exp

((
µ− λκ

ηκ + 1

)
t

)
(A.4.3)

which proves (6.4). Next, we prove (6.5), and first note that if the stock portfolio

is homogeneous so that condition (4.34) holds, then S
(κ)
0,j = S0, µj = µ, σj = σ, and

ρS,j = ρS for all firms A1, . . . ,AJ so that the S
(κ)
t,1 , S

(κ)
t,2 , . . . , S

(κ)
t,J are exchangeable.

Then, we observe that (5.12) - (5.19) in Theorem 5.2 will also hold if N
(m)
t is

replaced by a Poisson process Nt, and this fact will for large J therefore yield

P
[
LV,κ
t ≤ x

]
≈ P

[
JS0

(
1− exp

((
µ− 1

2
σ2ρ2S

)
t+ σρSWt,0

)(
ηκ

ηκ + 1

)Nt
)

≤ x

]
. (A.4.4)
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Using (A.4.4) with similar steps as in (5.20) - (5.22) with P [Nt = k] = e−λκt (λκt)
k

k!
then implies that

P
[
LV,κ

t ≤ x
]

≈ 1−
∞∑

k=0

e−λκt (λκt)
k

k!
Φ

 ln

((
1− x

JS0

)(
η+1
η

)k)
−
(
µ− 1

2
σ2ρ2S

)
t

σρS
√
t

 for large J

which proves (6.5), and this concludes the corollary.
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